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Al-Driven Semiconductor Chip Design Efficiency and Productivity Revolution

Preface

In the era of Al-driven innovation, the semiconductor industry is shifting from traditional yield
optimization to comprehensive productivity enhancement. To stay competitive, chip design now
focuses on enhancing performance, production capacity, and market competitiveness, beyond just
yield and cost. This book explores how Al can optimize design margins, timing signoff, testing strategies,
data analysis, process adjustments, binning strategies, and system-level compensation, driving a
revolution in semiconductor design and productivity.

Book Positioning

This book approaches semiconductor design from a physical implementation perspective, focusing on
the application of machine learning (ML) in Design-Technology Co-Optimization (DTCO). It covers
traditional ML and cutting-edge generative Al (GenAl), exploring strategies to enhance chip
performance and productivity.

Target Audience

Semiconductor Professionals: Chip design engineers, EDA developers, and researchers, offering
practical examples and insights.

Cross-Disciplinary Researchers: Helping them understand DTCO and explore Al applications.

Book Structure

We introduce DTCO principles, discuss machine learning applications in optimization, and analyze how
generative Al shapes the future of semiconductor design. The book also explores innovative EDA
development, showing how new technologies improve design efficiency and performance.
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Part I: Design Technology Co-Optimization, DTCO

Chapter 1. Overview and Evolution of DTCO

Design-Technology Co-Optimization (DTCO) is widely used in semiconductor physical design to improve
chip manufacturing efficiency and competitiveness. As illustrated in Fig. 1-1, the DTCO process can be
compared to optimizing a large-scale neural network.

During the forward inference phase, the primary objective is to maximize productivity. This includes
chip monitoring, Wafer Acceptance Test (WAT), Chip Probe (CP)/Final Test (FT), System-Level Test (SLT),
feature correlation analysis, and machine learning, ultimately optimizing yield and performance.

In the back-propagation optimization phase, the focus shifts to improving chip efficiency. This involves
calibrating chip models with real measurement data, adjusting process parameters, refining timing
extraction (Re-K) based on WAT results, customizing and optimizing standard cell libraries, performing
On-Chip Variation (OCV) regression analysis, and enhancing design margins and timing signoff strategies.
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Fig. 1-1 Unleashing Productivity and Efficiency with DTCO
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1.1. Principles of Design for Productivity

Common defects in the wafer manufacturing process include symmetrical resonance patterns (such as
concentric ripples or donut-shaped waves), scratches from the wafer polishing process (Polish Pattern),
oxide layer unevenness and tilt, as well as system-level defects (Test Site Pattern) caused by mask
exposure interference and test environment mismatches (e.g., Load Board and Probe Card).

These defects, combined with physical random variations, significantly impact device behavior. As
shown in Fig. 1-2, key parameters such as SIDD (leakage current) and RO (Ring Oscillator) can be
affected, with analog monitoring circuits (e.g., V/T Sensors) being particularly sensitive to test
environment mismatches. While the industry often focuses on fine-tuning microscopic parameters
(such as metal layer thickness and parasitic capacitance), systemic challenges that erode design margins
and their corresponding mitigation strategies are frequently overlooked.

Yield (30,4718 samples) SIDD (30, 4718 samples)

Uniformity

Fig. 1-2 Impact of Wafer Defects on System Performance Metrics

To effectively tackle these systemic challenges, WAT/CP analysis combined with Process Control
Management (PCM) is used to continuously monitor process parameters and chip test data during mass



@ DIGWISE TECHNOLOGY Empowering DTCO Innovation with Al and Machine Learning

production. The focus is on the distribution, probability density, and SPICE-to-Silicon (S2S) analysis of
each parameter, facilitating systematic compensation and post-silicon adjustments. By mapping and
correlating WAT and CP data, process optimization windows are identified, enabling the development
of chip performance grading and binning strategies, and applying compensation techniques to enhance
production efficiency, yield, and chip competitiveness.

1.2. Design Methodology for Ultimate Efficiency

During the design phase, process and cell library analysis optimize the drive strength, area, and power
consumption of key components in the chip architecture, improving overall reliability. Customized
design and microarchitecture optimization are applied to critical components, while on-chip sensors
implement defense strategies to address process variations and dynamic voltage drop (IR-drop),
ensuring design robustness. In the production phase, machine learning techniques analyze actual data
distributions, enabling the development of timing Re-K and signoff strategies (Timing Signoff) to better
understand process uniformity and OCV, achieving optimal design margins.

Traditional Flow Design for Efficiency
On-chip Sensor Design Process & Library Metric Extraction
Test Definition Analysis Timing Strategy

Custom Cell
Critical Path Opt.

RTL Design

On-chip Sensor Phvsical Implementation Area/Power Opt.
Hardening & Integration y P Timing re-K

Fabrication —-————

WAT/CP/FT/SLT
Analysis & Correlation

Testing & Validation

Design recipe opt.
>15% PE improvement

Mass Production

Fig. 1-3 DTCO Physical Design Flow

Fig. 1-3 illustrates the DTCO implementation flow, encompassing both pre-silicon preparation and post-
silicon analysis and feedback, driven by data and machine learning optimization. Pre-silicon preparation
includes process analysis, SPICE simulation, cell library analysis, feature extraction and modeling, critical
path performance improvement, and area and power optimization. Post-silicon analysis involves
designing and integrating on-chip monitoring circuits, testing, data correlation analysis, machine
learning platform application, automation of binning strategies, and optimization feedback.
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1.3. Future Directions of DTCO

The introduction of machine learning (ML) and generative Al (GenAl) is unlocking the full potential of
DTCO. From data-driven design analysis to generating realistic virtual chip data (Virtual Silicon), DTCO
not only tackles current challenges but is also set to drive future innovations in semiconductor design.
The following chapters will delve into how the DTCO.ML™ machine learning platform and the
DTCO.GenAl™ generative model platform can revolutionize design efficiency and productivity, paving
the way for new possibilities in the semiconductor industry.

Chapter 2. Key Challenges and Strategies in Driving DTCO

2.1. Key Challenges in Implementing DTCO
While DTCO holds immense potential, its implementation faces several challenges, as shown in Fig. 2-1:

e Data-Driven Bottlenecks: Successful DTCO implementation depends on accurate process and design
data, but data collection and integration are often limited by commercial secrets and technical
barriers.

e Cross-Disciplinary Expertise: DTCO requires close collaboration between design engineers and
process experts, both needing a deep understanding of each other’s technical domains, which
challenges traditional division-of-labor models.

e Support for Innovative Methods: Existing EDA tools and algorithms focus on isolated aspects, lacking
comprehensive integration of design and process interactions, which limits the ability to address
DTCO's complexity and optimization potential.

Huge & Confidential

Encryption & Modeling

Fig. 2-1 Data Acquisition Barriers
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2.2. Demand for Innovative Design Methods

High-reliability chip design and precise monitoring are unlocking new opportunities in markets like
smart devices, automotive systems, low Earth orbit (LEO) satellites, co-packaged optics (CPO) and and
medical applications. This includes high-precision power management systems for extended battery
life and integrating ultra-low energy (ULE) and Al technologies for inference in microcontrollers (MCUs).

e Reliability and Value Enhancement: Using machine learning and Al to optimize performance,
enhance reliability, and improve chip monitoring. Integrating process and chip optimization
accelerates market responsiveness and boosts the value of internal IP and EDA development.

e Precise Design Margins and Strategies: Through chip monitoring and data analysis, detailed insights
into process and component characteristics enable precise management of design margins and
compensation strategies, while fostering innovative design concepts to ensure stable performance.

e High-Performance Design: Combining Al and generative models to transform design processes and
EDA tools, delivering significant gains in efficiency and productivity, and driving chip design toward
greater intelligence and performance.

2.3. Productivity Optimization Platform Development

To address the challenges in DTCO implementation, developing a productivity optimization platform is
crucial, enhancing chip competitiveness and productivity through the integration of systems, talent,
tools, and methodologies:

e Data Center Integration: Establish a centralized system architecture to consolidate, extract, and
track design metrics, process parameters, and production data. This resolves data fragmentation and
provides efficient data support for design-process interaction optimization.

e Cross-Disciplinary Expertise Development: Strengthen the training of data science talent to improve
programming and data analysis skills. Foster deep collaboration between design and process experts
through visualization tools and correlation analysis, breaking down technical barriers.

e Tool Innovation and Standardization: Develop new EDA tools to support comprehensive DTCO
optimization, and standardize monitoring IPs and data formats. Optimize design and testing
methods to overcome the limitations of current tools in handling design-process interactions.

e Al and Machine Learning Applications: Leverage machine learning for feature modeling, regression,
and trend forecasting to optimize design-process interaction, including variation analysis,
performance grading, and dynamic compensation, driving DTCO efficiency improvements.

10
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Chapter 3. Optimizing Chip Energy Efficiency and Productivity

Fig. 3-1illustrates the main phases of project execution: design, manufacturing (packaging and testing),
and mass production. Each phase provides key support solutions to ensure the optimization of
productivity and efficiency throughout the entire process.

Library analysis, Metric extraction

Sensor IP, p-arch

Custom cell, Re-K Sign-off S2S
Prevention, Guideline QoR Tracking

[ ] Design (R Fabrication (R Production | Binning

J - J - policy
WAT/S2S re-K Recipe opt.
Uniformity/OCV
Timing sign-off
(Efficiency) (Productivity)

Fig. 3-1 Chip Productivity and Efficiency Optimization Practices

3.1. Preparatory Work Before Project Initiation

e Design and Process Characterization: Develop integrated tools to consolidate dispersed component
library data (e.g., area, timing, power) into a unified database. Use numerical analysis and feature
guantification to efficiently extract the physical parameters of core components.

e Process Analysis: Conduct WAT characteristic distribution analysis (e.g., Isat N/P, Vsat N/P),
correlate SPICE models with post-silicon data, identify key mean shifts, and establish design margins
to ensure process-design compatibility.

e Cell Characterization: Perform in-depth analysis of core library units, examining their behavior under
different switching speeds and load scenarios. Study the impact of process parameters, channel
length, threshold voltage, and temperature on cell properties.

e Preventive Design Guidance: Integrate decoupling capacitors early in design, such as incorporating
them into clock network components or using stacked Multi-bit DFFs with built-in capacitors to
control current density. Apply strategies like test clock separation and scan reordering to mitigate
IR-drop risks in later stages.

11
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e Supporting Measures: Integrate monitoring IP for post-silicon data analysis and establish a
comprehensive measurement strategy, including SPICE simulations, monitor integration, testing
methods, data collection, and validation processes to ensure system stability and reliability.

3.2. Custom Cell and Timing Signoff Strategy

e Optimizing Chip Efficiency: Analyze voltage, temperature, and design constraints to perform timing
corrections, addressing key drift from WAT data and identifying optimal operating points.

e Design Analysis: Evaluate the impact of key components on area and power consumption, focusing
on critical paths such as multi-bit registers (MBDFF), inverters, and adders across voltage scenarios,
minimizing signal distortion at lower voltages.

e Standard Cell Library Optimization: Optimize components affecting routing (e.g., XOR/XNR, MUX)
and clock cells (CKINV/BUF), balancing drive strength to improve reliability, power efficiency, and
frequency while reducing uncertainty.

e Custom Cell Optimization: Customize cells based on library and critical path evaluations (e.g., multi-
bit registers, pulse-latches), ensuring signal balance across voltages, preventing hold-time issues,
and using SPICE Monte Carlo for voltage and margin analysis.

¢ Timing Re-K: Adjust timing Re-K and signoff strategies based on WAT distributions to reduce margins
and boost competitiveness, estimating voltage gradients and precise margins through physical
parameter distributions and regression analysis.

e Preventive Physical Design: Enhance performance, area utilization, power efficiency, and reliability
with custom circuits, incorporating features like clock slew balance (CKINV/CKBUF) and dynamic IR-
drop prevention with built-in decoupling capacitors.

To reduce the risk of excessive local current density, as shown in Fig. 3-2, components with high toggle
rates and high current density are vertically arranged, with decoupling capacitors integrated around
them. This design effectively mitigates hotspot issues, as such hotspots, if not addressed during the
design phase, are difficult to resolve later, even if detected by tools.

12
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To address routing issues caused by algorithms, a comprehensive optimization strategy is employed,
combining top-down (considering routing and microarchitecture adjustments) and bottom-up
(optimizing individual or combined MEGA Cells [1]) approaches. For instance, optimization is performed
on the XOR-heavy portion of the SHA3 algorithm and the MUX-heavy section of the switch mechanism
to improve layout design efficiency, as shown in Fig. 3-3.

Logical merge may require a new split load buffer

e R~
/ (e //
D DD
L~ /! ll: D //
Location-based merging reduces D Bus signal merging reduces area
area without affecting timing without impacting timing

Fig. 3-3 MEGA Cell Exploration

3.3. Process Optimization and Analysis Techniques

e WAT and CP/FT Mapping and Correlation: Analyze WAT parameter distributions (e.g., Isat N/P, Vtl
N/P, loff N/P) and perform multi-dimensional correlation with CP/FT data, using data visualization
to identify defects and guide optimization.

e S2S Correlation and Library Data Integration: Correlate process and library data, analyzing SPICE
models and RO design measurements to ensure consistency and accuracy.

13
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¢ Uniformity/OCV Analysis: Conduct wafer uniformity regression and in-chip variation (OCV) analysis,
refining timing margin distribution to enhance performance and reliability.

e Process Recipe Optimization and Machine Learning: Use WAT and CP data correlation and
visualization to identify optimal process windows and design recipes, as shown in Fig. 3-4. Apply
machine learning and neural networks for feature modeling and regression, driving intelligent

production and design optimization.

Probability Density 671 smaples

: 0~ 9
rl: 9-18
r2:18-27
r3:27-36
ré:36-45
r5:45-54

M: 0~ 9
rl: 9-18
r2:18-27
r3:27-36
r4:36~45
r5:45-54

L N

SIDD

outer donuts
samples

Fig. 3-4 Data Visualization and Feature Correlations

3.4. Compensation Mechanism Design and Implementation

e Chip Performance Rating and Binning Strategy: Leverage machine learning or neural networks to
automate chip performance rating and binning, optimizing chip, wafer, and batch rankings to
enhance yield and production efficiency.

e Aging and Voltage Compensation: Design strategies to compensate for chip aging and voltage

fluctuations, improving lifespan and reliability.

14
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e Dynamic Margin Alert and Adjustment: Implement a dynamic slack alert system to adjust voltage
and clock strategies (e.g., clock frequency, gating, stretching) in real-time, optimizing performance
and fault prediction based on margin changes.

e |R/Variation Tolerance: Develop solutions for managing IR drop and process variation, including
dynamic voltage drop management, local gain, transient response, and fault tolerance, to ensure
stability and adaptability to PVT variations.

Fig. 3-5 shows the wafer-level RO frequency distribution, where the unevenness of the RO gradient
(Local Variation) cannot be eliminated through voltage compensation. This prompts a reassessment of
AOCV and LVF adequacy in STA methods and the integration of performance gradients. To address
these challenges, industry has proposed solutions such as LDO Array regional compensation and multi-

chiplet packaging to resolve process-related issues.

F200

00

RO frequency distribution

Fig. 3-5 RO Gradient Uniformity

As shown in Fig. 3-6, process control variations can cause significant performance gradients between
the northern and southern hemispheres and the inner and outer rings of the wafer. During chip mass
production and packaging testing, the critical path often involves a mix of components, leading to poor
correlation between performance metrics like Small-delay Fault (DFT) or MBIST and Fmax. Furthermore,
process variations can cause tools and algorithms to identify sensitive critical paths from different
groups, complicating the issue.

15
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3.5. Challenges and Demands of Near-Threshold Voltage Technology

At near-threshold voltage (<300mV), the 'reverse temperature anomaly' is common, as shown in Fig.
3-7. Traditional design processes rely on SPICE models and Liberty libraries from the foundry to set
timing signoff boundaries. However, critical parameters like WAT Isat and Vtl are typically only available
after mass production acceptance, revealing insufficient design margins and highlighting the limitations

of current design processes in both scientific and practical terms.
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Fig. 3-7 Temperature Inversion
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In early multi-core chip designs, Package RLC was crucial for power layout and analysis. The increased
total current during parallel processing amplified voltage drop noise (Ldi/dt). To mitigate this, the
'Voltage-Stacking' design was introduced.

- Z power deivery__ *N
: e
——~ 00003
; | ! ! Vo
vDD ') . - == — CORE CORE core | Veore
YA power delivery |
'_E l
. Benefit:
CORE = Veore 1. feasible power supply & level-shifter cost
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| — 3. less core-level IR drop impact
* + 4. better noise immunity & process compensation
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Fig. 3-8 Voltage Stacking

As shown in Fig. 3-8, stacking chips to reduce Vmin (e.g., below 300mV) helps distribute noise across
more chips, creating a self-compensating 'current dynamic balancing' system. However, leakage
currents from thermal effects or process variations may lower voltage thresholds for underperforming
chips, while currents from inactive chips can negatively affect the system. This challenges traditional
low-voltage regulation techniques (e.g., CG/DVFS/AVS), requiring system-wide adjustments rather than
individual chip tuning, making it a promising area for further research.
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Part Il: DTCO.ML™ - Machine Learning-Driven Semiconductor Process Optimization

Chapter 4. The Integration of Machine Learning and DTCO (DTCO.ML™)

Chip design and manufacturing depend on industry collaboration. Traditional methods struggle to fully
capture device and system behavior, resulting in overly conservative timing signoff and challenges in
managing design margins. With data science, the design process has become more scientific and
efficient. As shown in Fig. 4-1, integrating machine learning, IP, EDA tools, and design processes creates

a high-efficiency solution that enhances design productivity.

IP/Custom Cell Design Methodology Binning Strategy

Process recipe
ML/GenAl

NO2XNR2_O_1 2

Metric/Sensor IP
)" p-arch/Al-boost

Data science/S2S

WAT/CP correlation Uniformity/OCV
w0253 Design margin
. US 11144695, 11880643, 11506714, ...
Voltage stacking eV i————> TW 1700598, 1769829, ...
Www (Margin) | Process Management :
< y j Vmin reduction &
" . . . o I Supporting measures

Ldiidt  Library Physical Design . Process Variaion :

Energy Efficiency (J/T)

Fig. 4-1 Revolutionizing Efficiency & Productivity through DTCO.ML

e |P Solutions and Custom Cells: Enhance energy efficiency, area, and reliability with on-chip
monitoring, dynamic voltage/temperature sensing, slack alerts, and computational units. Support
diverse clock schemes (asynchronous, self-clocked, PL/PG) and custom cells for clock networks and
critical paths, optimizing performance, power, and area. Include dynamic IR prevention,
microarchitecture (p-arch), and MEGA cell optimization to improve routing and multi-logic efficiency.

e EDA and Design Process Development: Employ machine learning and Al to develop innovative EDA
tools and design processes, overcoming traditional cross-domain and data interaction limitations for
more accurate design iterations and optimizations.
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e Binning Compensation Strategy: Leverage advanced tools for feature extraction and library analysis,
capturing high-dimensional trends. Use the DTCO machine learning platform to optimize design and
process, implementing binning and compensation strategies to boost chip efficiency and
productivity.

4.1. Virtual Wafer Data Modeling (Virtual Silicon)

We manually construct virtual wafer data by observing, transforming, and standardizing the data,
combined with stochastic process modeling. First, we create virtual wafer coordinates, retaining only
the data within the radius of the wafer center. Example 4-1 demonstrates the generation of virtual
wafer coordinates, with a wafer size of 65x65 samples, as shown in Fig. 4-2.

Example 4-1 Virtual Silicon: Gaussian-Volcan Wafer Data

# Virtual Silicon : Gaussian-Volcano Wafer Data
import matplotlib.pyplot as plt
import numpy as np

def genWaferXY(w=65, h=65):
ix, iy = np.linspace(1, w, w), np.linspace(1, h, h)
gX, gy = np.meshgrid(ix, iy)
cX, cy = np.ceil(w/2).astype(int), np.ceil(h/2).astype(int)
cr = min(cx, cy)
r = np.sqrt((gx-cx)**2 + (gy-cy)**2)
mask = (r <= cr)
X, Yy, r = gx[mask], gy[mask], r[mask]
if False:
plt.figure(figsize=(6,6))
plt.scatter(x, y, s=15, alpha=0.4, marker='s")
plt.scatter(cx, cy, s=15, c='r', marker='s")
plt.xlabel('X")
plt.ylabel('Y")
plt.tight_layout()
return x, y, r

def volcanoSin(r):
® = np.interp(r, [1,65], [-np.pi, np.pi])
z = np.sin(® - np.pi/2) - 1.5 * np.sin(6/2 - np.pi/2)
return np.interp(z, [z.min(), z.max()], [0, 1])

def volcanoGaussian(r, hl=1, s1=15, h2=1, s2=5):
gl = hl * np.exp(-r**2/(2*s1**2))
g2 = h2 * np.exp(-r**2/(2*s2**2))
z = g1-0.5%g2
return np.interp(z, [z.min(), z.max()], [0, 1])

#%% gendataset

X, Yy, r = genWaferXY()
z1 = volcanoSin(r)

z2 = volcanoGaussian(r)
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Fig. 4-2 Virtual Wafer Data Mapping

Different fabs exhibit distinct uniformity patterns. For example, some processes show systematic
defects, such as volcano-shaped structures in RO or SIDD data along the XY coordinates. We simulate
this using Sin or Gaussian functions with varying amplitudes. By applying these functions to the wafer
coordinates, we generate volcano-like structures (z0), with probability density distributions typically U-
shaped, resembling a hyperbolic cosine (Cosh) distribution. Gaussian functions produce smoother
distributions compared to Sin, as shown in Fig. 4-3.

3,405 samples

L Sin
Gaussian

0.2 0.4 0.6 0.8 1.0

Fig. 4-3 Volcano Surface Distribution and Probability Density
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Example 4-2 generates the first set of virtual wafer data z1 (e.g., RO) based on the Gaussian-Volcano
surface. First, the smooth surface z0 is transformed into a standard normal distribution (e0~N(0,1)),
then Gaussian noise (e1~N(0,1)) is added before scaling back to the original z0 range. For visualization
and comparison, we use np.interp(x, [original range], [target range]) to normalize z1 to [0,1]. After
adding Gaussian noise, z1 follows a skewed Gaussian distribution, with mean and variance adjustable
to match real-world observations (e.g., RO), as shown in Fig. 4-4.

Example 4-2 RO Silicon Data Modeling and Standardization

#%% generate an RO surface with Gaussian noise
X, Yy, r = genWaferXyY()
z0 = volcanoGaussian(r)
€0 = 1/z0.std()*(z@-z0.mean()) # z0 to ~N(0,1)

# combine with noise
€l = np.random.normal(@, 1, len(z@)) # noise ~N(0,1)

z1 = (€0 + 8.2%el) # ~N(0,1)
z1 = z@.std()*z1 + z@.mean() # back to z@ scale
z1 = np.interp(zl, [z1l.min(), zl.max()], [@, 1]) # to [@, 1] for comparison

#%% conditional Gaussian standarization

# generate SIDD with a correlation of 0.9 with z1

p =20.9

€l = 1/z1.std()*(z1-z1.mean()) # z1 to ~N(©,1)

€2 = np.random.normal(@, 1, len(zl)) # noise ~N(0,1)
z2 = p*el + np.sqrt(l-p**2)*e2 # ~N(0,1)

3,405 samples

20: u,s= 0.41, 0.33
2.5 21: u,s= 0.47,0.24

0.2 0.4 0.6 0.8 1.0

Fig. 4-4 Volcano Surface with Gaussian Noise
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Example 4-3 generates the second set of data (22, e.g., SIDD) using a Conditional Gaussian distribution.
Observations indicate a strong positive correlation (p=0.9) between RO and SIDD, so we aim to maintain
the same correlation between z2 and z1. First, z1 is standardized to a normal distribution (e1~N(0,1)),
then the second dataset is generated using the formula p-e1+np.sqrt(1-p**2)-€2, where €2 is is random
noise following N(0,1).

Example 4-3 SIDD Modeling and Standardization

def logNormScale(u, s): # normal to log-normal
log u = np.log(u**2 / np.sqrt(s**2 + u**2))
log s = np.sqrt(np.log(l + s**2 / u**2))
return log u, log_s

mu, sigma = 0.5, 0.1 # target mu and sigma of SIDD

log_u, log_s = logNormScale(mu, sigma) # retarget to log-normal scale
z2 = np.exp(log_s*z2 + log_u) # to z2 scale

z2 = np.interp(z2, [z2.min(), z2.max()], [0, 1]) # to [©, 1] scale

plt.figure(figsize=(10,9))

axl = plt.subplot(221, projection='3d', title='z1")

axl.plot_trisurf(x, y, z0, alpha=e0.3)

axl.plot_trisurf(x, y, zl, alpha=e0.4)

ax2 = plt.subplot(222, projection='3d', title='z2")

ax2.plot_trisurf(x, y, z0, alpha=0.3)

ax2.plot_trisurf(x, y, z2, alpha=0.4)

ax3 = plt.subplot(223, title=f'{len(zl):,} samples')

ax3.hist(z@, bins=50, density=True, alpha=0.4, label=f'z0: u,s= {z@.mean():.2f}, {z0.std():.2f}")
ax3.hist(z1, bins=50, density=True, alpha=0.4, label=f'zl: u,s= {zl.mean():.2f}, {zl.std():.2f}")
ax3.hist(z2, bins=50, density=True, alpha=0.4, label=f'z2: u,s= {z2.mean():.2f}, {z2.std():.2f}")
ax3.legend()

ax4 = plt.subplot(224, title=f'{len(zl):,} samples')

ax4.scatter(zl, z2, alpha=0.4)

ax4.set_xlabel('zl: RO")

ax4.set_ylabel('z2: SIDD')

plt.tight_layout()

While RO and SIDD are highly correlated, SIDD follows a log-normal distribution. To reflect this, we
adjust the mean and standard deviation accordingly and apply an exponential transformation. This
method handles missing data in one dimension, such as sparse WAT data alongside complete x, y, and
RO data. By leveraging reliable boundaries, statistical properties, and high-dimensional correlations, we
generate accurate predictions.

As shown in Fig. 4-5, we obtain two-dimensional virtual wafer data: z1 (RO) and z2 (SIDD), maintaining
a correlation of p=0.9. Their feature vectors preserve the overall structural trends in the wafer
coordinate system. RO follows a skew-normal distribution, while SIDD exhibits a log-normal
distribution.

22



@ DIGWISE TECHNOLOGY Empowering DTCO Innovation with Al and Machine Learning

3,405 samples 3,405 samples

3.0 1 20: u,s= 0.41, 0.33 1.0 -
z1: u,5= 0.50, 0.20
z2:u,5= 0.36, 0.18

0.8 A

0.6

z2: SIDD

0.4 1

024"

0.0

02 04 06 08 1.0
21: RO

Fig. 4-5 Log-Normal Conditional Gaussian with Proper Covariance

Real silicon data often exhibits complex nonlinear relationships and large-scale uniformity structures
beyond simple skew-normal or log-normal distributions. The next chapters explore how generative Al
enhances precise modeling and analysis.

4.2. Building and Inferring Regression - Models

Estimating timing margins and power consumption in physical design is time-consuming. For leakage
current evaluation, traditional methods require LIB CAD engineers to rebuild libraries for numerous PVT
corners (Re-K) and use EDA tools for analysis. However, for undefined corners, reliability decreases, and
conclusions may be impossible.

To address this, we perform SPICE simulations and characterization at key voltage and frequency points,
as shown in Fig. 4-6 (a). The sparse discrete data points are then fitted with a quadratic regression
surface (orange curve), modeling leakage as leak=f(V,T). This enables machine learning to reliably

predict values and trends beyond the library-defined conditions, such as 0.32V at 70°C. °

23



@ DIGWISE TECHNOLOGY Empowering DTCO Innovation with Al and Machine Learning

Regression FFG
@ SPICE T
@ Prediction @0.32V,70C SSG

* Normal: 10,000

original grid 6

Leakage

(b)

Fig. 4-6 Precise Leakage Prediction

Example 4-4 simulates the SPICE data for CKINV under the TT process, covering 11 discrete voltage and
temperature conditions. Using Least Squares Regression (LSR), we can accurately predict values not
included in the original PVT grid, such as leakage at 0.32V and 70°C.

Example 4-4 Least Squares Regression

# Leakage model regression and prediction.
import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

import scipy.linalg

# CLKINV1_CleuL @TT
= pd.DataFrame(

[[ . 29 50, 1.1656 ], [ ©.29, 85, 3.8962 ], [ ©.29, 105, 7.0997 ],
[ 0.31, 25, 0.4655 ], [ ©.31, 50, 1.2776 ], [ ©.31, 85, 4.2603 ],
[ 0.33, 25, 0.5086 ], [ ©.33, 50, 1.3934 ], [ ©.33, 85, 4.6352 ],
[ o. 5, 50, 1.5129 ], [ ©.35, 85, 5.0208 ]], columns=['V','T','leak'])

#%% LS Regression
X, ¥, z = tt.values.T
X = np.array([np.ones_like(x), x, x**2, y, y**2  x*y]).T # training set
C,_, ,_ = scipy.linalg.lstsq(X, z) # LS regression coefficient
# regression grid
ix, iy = np.linspace(x.min(), x.max(), 20), np.linspace(y.min(), y.max(), 20)
gx, gy = np.meshgrid(ix, iy)
tx, ty = map(np.ravel, (gx, gy))
T = np.array([np.ones_like(tx), tx, tx**2, ty, ty**2, tx*ty]).T
z = np.dot(T, C)
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# predict condition 0.32V, 70°C not present in the SPICE metric
v, t =0.32, 70
p = np.dot(np.array([1, v, v**2, t, t**2, v*t]), C)

plt.figure(figsize=(6,6))

ax = plt.subplot(projection="'3d")

ax.plot_wireframe(gx, gy, tz.reshape(gx.shape), alpha=0.4, colors='orange', label='Regression')
ax.scatter(x, y, z, s=50, alpha=1, label='SPICE"')

ax.scatter(v, t, p, s=50, c='r', alpha=1, label=f'Prediction @{v}V,{t}C")
ax.plot([v,v], [t,t], [@,p], c="gray')

ax.text(v, t, p, f'{p:.3f}")

ax.set_xlabel('V")

ax.set_ylabel('T")

ax.set_zlabel('Leakage')

ax.set_box_aspect((1,1,1), zoom=1.0)

plt.legend()

plt.tight_layout(rect=(-0.1,0.05,1,1))

Additionally, we can generate a dense grid of data based on the process corner models and elevate it
to a 3D model, constructing leak=f(V,T,P). Using a Gaussian distribution probability cloud, we can
quickly identify trends for faster process corners (such as FF +1o or +1.50), enabling comprehensive
analysis and optimization of design parameters, as shown in Fig. 4-6 (b).

Continuing with the previous example, Example 4-5 constructs LS surfaces from discrete points of FFG
and SSG and generates a dense grid for the training set. Assuming the range from FFG to SSG covers 60,
the model’s input parameters are expanded to three dimensions, f(V,T,P), to construct the leakage
model. Then, based on a Gaussian normal distribution, 10K random samples are generated around the
mean (0.32V, 65°C, TT) of (V,T,P), predicting the complete leakage distribution under this model.

Example 4-5 Leakage Modeling and Prediction

# model fitting: leak = f(V,T,P)
ss = pd.DataFrame(
[[ ©.31, 25, ©.1249 ], [ ©.31, 50, ©.3709 ], [ ©.31, 85, 1.3588 ],
[ ©.31, 105, 2.5932 ], [ ©.33, 25, ©.1361 ], [ ©.33, 50, 0.4033 ],
[ .33, 85, 1.4742 ], [ ©.35, 50, ©.4365 ], [ ©.35, 85, 1.5924 ],
[ .35, 105, 3.0324 ]], columns=['V','T",'leak'])

ff = pd.DataFrame(
[[ .29, 50, 3.889 ], [ ©.29, 85, 11.802 ],
[ 0.31, 25, 1.687 ], [ ©.31, 50, 4.276 ], [ ©.31, 85, 12.939 ],
[ ©.33, 25, 1.849 ], [ ©.33, 85, 14.115 ]], columns=['V','T','leak'])

# model fitting for each process corner

gnum = 20

pX,py = np.linspace(0.29,0.35,gnum),np.linspace(25,105,gnum)
gx,8y = np.meshgrid(px,py)

tx,ty = gx.ravel(),gy.ravel()

tzL = []

T = np.array([np.ones_like(tx), tx, tx**2, ty, ty**2, tx*ty]).T
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for d in [tt, ff, ss]:
X,Y,z = d.values.T
X = np.array([np.ones_like(x), x, x**2, y, y**2  x*y]).T
C, , ,_ = scipy.linalg.lstsq(X,z) # LS regression
tzL += [np.dot(T,C)]

ptt,pff,pss = tzL

# model fitting for all corners

size = gnum**2

a,b,c = np.array(list(tx)*3),np.array(list(ty)*3),np.array([3]*size+[0]*size+[-3]*size)
z = np.array(list(pff)+list(ptt)+list(pss))

X = np.array([np.ones_like(z), a, a**2, b, b**2, c, c**2, a*b, a*c, b*c]).T

C, ,_,_ = scipy.linalg.lstsq(X,z) # LS regression, as f(V,T,P)

# Generate 10K random samples from a Gaussian normal distribution
size = 10000

V = np.random.normal(@.32, (0.35-0.29)/6, size)

T = np.random.normal(65, (105-25)/6, size)

P = np.random.normal(®, 1, size)

a,b,c = V,T,P

X
p

np.array([np.ones_like(a), a, a**2, b, b**2, c, c**2, a*b, a*c, b*c]).T
np.dot(X,C) # batch prediction

# predict condition ©.32V, 70°C, TT+1.50 not present in the SPICE metric
#pa,pb,pc = 0.32, 70, 1.5
#pp = np.dot(np.array([1, pa, pa**2, pb, pb**2, pc, pc**2, pa*pb, pa*pc, pb*pc]).T, C)

plt.figure(figsize=(6,6))

ax = plt.subplot(projection='3d")

ax.plot_wireframe(gx, gy, pff.reshape(gx.shape), colors='r', alpha=0.4, label='FFG')
ax.plot_wireframe(gx, gy, ptt.reshape(gx.shape), colors='b', alpha=0.4, label="TT'")
ax.plot_wireframe(gx, gy, pss.reshape(gx.shape), colors='g', alpha=0.4, label='SSG'")
ax.scatter(a, b, p, s=5, alpha=0.2, c='k', label=f'Normal: {size:,}")
ax.set_xlabel('V")

ax.set_ylabel('T")

ax.set_zlabel('Leakage"')

ax.set_box_aspect((1,1,1), zoom=1.1)

plt.legend()

plt.tight_layout(rect=(-0.1,0.05,1,1))

4.3, Application of Data Tracking and Production Optimization

As shownin Fig. 4-7, feature regression analysis predicts chip quality, enabling the classification of chips,
wafers, and batches. By leveraging cross-dimensional modeling and extensive data analysis, precise
classification strategies and yield assessments are developed, optimizing design recipes to enhance
production efficiency and process reliability. This data-driven approach overcomes traditional design
limitations, making chip design more scientific and addressing challenges from overly conservative
timing signoff margins.
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Fig. 4-7 Product Shipment Optimization

By integrating hardware detection circuits with machine learning and regression models, optimal
recommendations for design margins and timing signoff are derived. Using chip production test data
(WAT, CP, FT, SLT), wafer fab terminology (e.g., WAT Isat, Vtl) and chip design terminology (e.g., CP
Performance, Leakage) are mapped to high-dimensional features (e.g., yield or energy efficiency),
ensuring alignment between design and manufacturing, as shown in Fig. 4-8.
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Fig. 4-8 Process Window Aligned with SPICE Target
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Chapter 5. Library Metric Extraction and Analysis System (libMetric™)

Library cell benchmarking effectively quantifies performance by evaluating key metrics such as drive
strength, delay, and power consumption, providing a basis for design optimization. However, a great
design isn't solely reliant on high-driving components, just as a high-powered sports car isn't suited for
rugged, winding mountain roads, as shown in Fig. 5-1. The design process requires balancing factors
such as drive strength (cell driving), threshold voltage (Vth), architecture, and layout.

Library feature extraction (Metric Extraction) and trend analysis are crucial for identifying mismatches
between cell parameters and design tools or algorithms. This process is essential for efficient cell library
development. Performance gaps can arise between cells with varying Vth or channel lengths. When
traditional EDA tools can't meet timing requirements, compromises like increasing area (up-sizing) or
reducing power efficiency (adjusting Vth or channel length) may be necessary, potentially impacting
overall design performance.

Fig. 5-1 The Art of Design Performance: Navigating Mountain Roads Like a Sports Car
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Fig. 5-2 Cell Speed and Leakage Evafuation

As shown in Fig. 5-2, data extraction highlights the gaps between standard cell libraries and EDA tool
optimizations. Targeted improvements can boost chip competitiveness, such as balancing drive
strength in critical path components, optimizing clock tree components for voltage regulation (Dynamic
IR prevention), reducing area and power in layout design, and solving APR routing issues through pin
placement optimization. Additionally, cell integration and customization, along with re-architecting and
redesigning, can enhance performance.

In practice, optimization strategies are based on critical path and bottleneck analysis. By combining
system tasks with market demands, statistical methods help redevelop key components. Prioritizing
and optimizing performance bottlenecks leads to the best balance of performance, power, and area,
resulting in significant design improvements.
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As shown in Fig. 5 3, the current timing and power data for the cell library are stored in discrete grid
(lookup table) format. This method consumes considerable memory and presents challenges, such as
difficulty in efficiently assessing cell performance sensitivity to PVT variations, accurately comparing
cells, and potential misunderstandings. For instance, different fabs lack standardized units, resolutions,
and indexing methods, with index scales often increasing in powers of 2 to compress data. Misaligned
index ranges can lead to incorrect conclusions. Furthermore, engineers must spend significant time
performing interpolation across different cells, with varying index ranges for different PVT corners,
adding to the workload.

Through regression analysis, discrete grid data can be fitted into a quadratic equation with six
coefficients (bias, x, x?, y, ¥, x*y), enabling unified indexing for comparison and efficient surface
reconstruction via inner product computation. This approach also extends to broader ranges,
facilitating trend observation and deeper data analysis.

For example, for INVD1, its delay (Delay) is determined by the regression coefficients Sr (cell rise) and
Sf (cell fall), which are used to calculate the original delay times zr and zf. The calculation formula is as
follows:

Delay = CO + C1* + C2*%? + C3 %y + C4 %2 + C5 **y,

Here, x represents load (in units of pF), and y represents transition time (in units of ns).
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Fig. 5-4 INVD1 Cell Delay

Code Example 5-1 uses Least Squares Regression (LS Regression) to fit the delay time (cell rise and cell
fall) of the digital circuit unit INVD1 and visualizes the results, as shown in Fig. 5-4.

Example 5-1 Cell Timing Modeling

# INVD1 Cell Timing Modeling.
import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import scipy.linalg

X = np.array([0.0002, 0.0005, 0.0012 , 0.0026, 0.0053, 0.0107, 0.0215, 0.0432]) # index_2: load (pF)
y = np.array([0.0032, 0.0079, 0.0173, 0.036 , 0.0735, 0.1485, 0.2984, 0.5983]) # index_1: tran (ns)
np.array([0.01, 27.422, -57.761, 0.603, -0.211, 8.85]) # cell rise regression coefficient

Sr =
Sf = np.array([0.007, 22.323, -56.998, 0.577, -0.223, 9.034]) # cell fall regression coefficient

gx,gy = np.meshgrid(x,y) # mesh grid
tx,ty = map(np.ravel, (gx,gy)) # flattened mesh grid
T = np.array([np.ones_like(tx), tx, tx**2, ty, ty**2, tx*ty]).T # regression grid

np.dot(T, Sr) # original cell rise (ns)
np.dot(T, Sf) # original cell fall (ns)

zr
zf

# LS regression
Cr,_,_,_ = scipy.linalg.1lstsq(T, zr) # LS regression coefficient

)
Cf,_,_,_ = scipy.linalg.lstsq(T, zf) # LS regression coefficient
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# visualization

plt.figure(figsize=(7,6))

ax = plt.subplot(111, projection='3d")
ax.scatter(gx,gy,zr.reshape(gx.shape), label='cell rise')
ax.scatter(gx,gy,zf.reshape(gx.shape), label='cell fall')
ax.plot_surface(gx,gy,np.dot(T, Cr).reshape(gx.shape), alpha=0.3)
ax.plot_surface(gx,gy,np.dot(T, Cf).reshape(gx.shape), alpha=0.3)
ax.set_xlabel('Load: index_2")

ax.set_ylabel('Tran: index_1")

ax.set_zlabel('Delay')

plt.legend()

plt.tight_layout()

5.2. Cell Feature Extraction

To perform batch cell feature extraction, we need to ensure that each cell operates and is evaluated
under the same environmental conditions. As shown in Fig. 5-5 (a), we define the NAND gate of D1 as
the basic unit and use the chip's primary operational conditions (e.g., TT, 0.75V, 25°C) as the sampling
conditions. The load is defined as the input capacitance driving four identical basic units, and this
structure is referred to as BU. As shown in Fig. 5-5 (b), after connecting six stages of BU, the stable
waveform (converged transition) will serve as the input for each cell to be featured for extraction (DUE),
as shown in Fig. 5-5 (c).

T ) Base gate := ND2D1 @TT, major operating voltage & temperature (a)

- Base unit (BU) Device under extraction
DUE

- —_ (b)

4 pin cap. of base gate 4 pin cap. of base gate
given an arbitrary slew converged transition
—BUHBUBUHBUHBUHBU DUE (c)

| 4x pin cap. of base gate

Fig. 5-5 Cell Metric Extraction
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Currently, standard cell libraries primarily use the Liberty format (such as NLDM, CCS, LVF, etc.) for
characterization. However, this format includes large data volumes, legacy burdens, and redundant
data blocks defined by various EDA vendors for their tools. To accelerate data extraction, analysis, and
debugging, we convert key timing and power information into a lightweight JSON format (see the open-
source project https://github.com/dipsci/DTCO/tree/main/libMetric).

We then apply Least Squares Regression (LS Regression) to each cell’s timing path, retaining only the
regression coefficients (LSC) and generating a concise snapshot with core parameters, including area,
input capacitance, driving strength, timing, and power, enhancing efficiency and accuracy. Finally,
Liberty files from various PVT corners are consolidated into a unified database, enabling seamless
guerying and batch comparisons, optimizing data management and workflows, as shown in Fig. 5-6.

-
Netic ESC ClassMetric 3

(PVT corners)
Fig. 5-6 Metric Extraction Flow

CCS liberty JSON

(PVT corners)

<
Metric LUT
(PVT corners

_—
mergeDB

(PVT corners)

By extracting and analyzing physical features, we can efficiently study each cell's behavior under varying
input transitions, load conditions, and different process parameters, such as channel length, threshold
voltage (Vth), operating voltage, and temperature.

5.3.RO Simulation

A common method for process and device performance evaluation involves designing a ring oscillator
(RO) and running SPICE simulations to generate a 2D scatter plot of frequency and power consumption.
However, using the extracted feature data, we can bypass the need to construct an RO or run SPICE
simulations, avoiding complex steps like logic synthesis, gate-level simulation, LVS verification, and
SPICE circuit extraction. The approximate calculation method shown in Fig. 5-7 enables quick estimation
of results.
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Fig. 5-7 RO Simulation

Pint. represents the internal power consumption of the component, measured in uW/MHz(or pJ/op,
the energy consumed per circuit transition). Given the target frequency, the power consumption is the
product of these values (unit: pW). The required number of stages N can be calculated, neglecting the
delay of the first-stage NAND gate. The RO frequency is the reciprocal of the delay period 2N-Dy, where
Dy is the delay snapshot extracted from the component (DUE) under specific conditions.

5.4. Standard Cell Library Batch PPA Benchmarking

Using the methods described, we can efficiently compare and evaluate cell libraries across multiple PVT
corners. For example, in cell library A, SVT cells from C20 to C16 show a negative gain in total power
consumption (including dynamic and leakage power), which further decreases with higher operating
frequency and switching rate, as shown in Fig. 5-8.

When selecting cell library A for practical applications, low-speed designs typically require leakage
optimization through adjustments to threshold voltage (Vth) and channel length, while excluding SVT
and C20 cells to avoid negative effects. For high-speed designs (e.g., CPUs or GPUs), it may be necessary
to temporarily disable leakage optimization or replace C20 cells to reduce power consumption and
meet performance requirements.

34



4

@\} DIGWISE TECHNOLOGY Empowering DTCO Innovation with Al and Machine Learning

F F 1
e — '
2 2 !
I
& & 1=
Design & IF
marketing strategy
___",/.- - Track, Vt, CL, MASK
Speed Speed
F 9 N F 9
.
- Library A ' .
[1¥] (] @
= 1 =
o ! o
o .-'I o
204 800MHz
. BOOMH
O0MHz P
JULVT
hedli 200MHz _
.
. - @ [ ]
L ] o= r
e ,' 200MHz
VT e
~Library B - -
Speed Speed

Fig. 5-8 Library Evaluation

Library Metrics helps engineers assess potential risks early in design, such as voltage-dependent
requirements, temperature sensitivity, and timing Re-K cell skew or timing window shifts. As shown in
Fig. 5-9, designers can evaluate setup and hold window requirements for DFFs. If setup skew issues
arise (e.g., good front-end timing but inadequate back-end hold time), components can be marked as

'don't use' to improve efficiency and reliability.

With LS Coefficients recording timing characteristics, engineers can adjust conditions for specific timing
arcs or expand the working range (via vector inner product) to explore trends, as shown in the right

side of Fig. 5-9.
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Fig. 5-10 Slew Balance Batch Comparison

As shown in Fig. 5-10, batch feature extraction helps engineers identify risks in the selected cell library
and offers optimization suggestions. Based on requirements, engineers can choose appropriate cells
for clock-tree optimization or hold buffer correction. This method also detects transition rise/fall
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imbalances early and predicts cell performance under various PVT conditions. Additionally, before
physical design, design specifications and strategies can be formulated, such as:

¢ Initial Design Phase Deactivation: For Cell Library A, in the 200MHz to 1.2GHz range (10% switching
rate), it is recommended to temporarily disable SKP, SKN, and OPT cells.

¢ Driving Strength Evaluation: Prioritize the placement of PLLs and clock inverters to meet drive
strength requirements for critical paths, with feedback for custom cell adjustments if necessary.

e Routing-friendly Evaluation: For complex cells with a high pin count (e.g., INR, IND, IINR, lIND, IAQ),
increase size to at least D2 to avoid routing bottlenecks and layout issues, or provide feedback for
optimization, as shown in Fig. 5-11.

Al RO \
v B ™1 %
_— az. 1 | | N
" y BN - S
INR2D* IAO21D*

Fig. 5-11 Cell Candidates for Routability Optimization

Chapter 6. On-Chip Sensor Design and Integration (GRO Compiler)

As machine learning evolves, on-chip monitors like Ring Oscillators (RO) are shifting from optional to
essential components. However, challenges remain in design optimization, architectural simplification,
and maximizing benefits. To tackle these, we can focus on the following strategies:

e Objective Clarification: What are our goals? For example, understanding the deviation between
SPICE models and actual silicon performance, optimizing process parameters and signoff recipes, or
developing chip compensation strategies.

¢ Indirect Benefits: What additional insights can machine learning provide? For example, analyzing
wafer uniformity and quantifying on-chip variation (OCV).

e Advanced Applications: How can we refine data analysis and enable real-time monitoring? For
instance, dynamic IR sensors, cycle-based slack alerts, and dynamic adjustments with compensation
strategies.
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By addressing these questions, we can define clear objectives and systematically plan RO integration
into the chip. Through traditional design and testing processes, we gather targeted data to optimize
the process and enhance chip performance. Figure Fig. 6-1 shows the architecture of a Grid Ring
Oscillator (GRO), where various components are integrated with selectable delay lines, managed by an
SPI controller. This design allows multiple ROs to be strategically placed across the chip, particularly in
areas affected by IR drop, for more efficient monitoring.

Different DL cells in one RO (144,966 samples)

PP — \
l ¥ 100 A t t
@e—e. ... @
/ 80 4
o o off: =
i : ¥
{ i e 60 |
-
6 1 @ (
@ @ z
i -
| % 8

ChainOut

ROSel—> GRO Control

ROEN —>-.
Self Binning
20

Speed/Voltage Calibration

Fig. 6-1 GRO Integration and SPICE-Silicon Correlation

As shown in Fig. 6-2, a typical RO (Ring Oscillator) circuit is controlled by a NAND gate, with the REN
pin acting as a switch and multiple delay elements (Delay-Line, DL) connected in series. A multi-bit
counter records the output frequency. For comparing cell delays with a SPICE model, the delay
elements should occupy over 99% of the RO cycle to minimize control gate variability. In the layout, it's
recommended to arrange RO groups vertically or staggered and ensure sufficient power distribution to
reduce the impact of localized dynamic voltage drops on data accuracy.
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Fig. 6-2 RO Design Guideline

We can use the unique chip identifier (UID) to adjust performance ranking strategies and explore new
RO structures, such as connecting two distant functional ROs to form a larger-scale gross-effect RO.
Additionally, RC variation effects, though related to component drive capability, can be indirectly
guantified through data analysis to derive a regression model.

6.1. Goal-Oriented RO Design

The challenge is maximizing design efficiency while minimizing area overhead. RO delay elements (DL)
can be built from various standard cells, but selecting the optimal combination is key.

As shown in Fig. 6-3, the physical design process spans multiple stages, from design constraints and F/V
Shmoo evaluation to pre-/post-CTS and post-route. Analysis of cell usage reports reveals that 80% of
area and power consumption stems from 20% of core cells and clock-tree components, making them
prime targets for S2S (SPICE-to-Silicon) optimization. For example, SHA-3 relies heavily on XNR/XOR
cells, while Switch modules often use multi-bit MUX elements.
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To evaluate N/P process balance, P-MOS stacked NOR and N-MOS stacked NAND can serve as auxiliary
indicators in post-silicon measurement, providing key insights for process optimization while meeting
performance demands.
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Fig. 6-3 Cell Usage and PPA Evaluation

6.2. SPICE-to-Silicon Correlation

/
<
\

different PR stages

As shown in Fig. 6-4, post-silicon RO measurements align precisely with SPICE simulations under
different process conditions (SS, TT, FF), enabling accurate identification of distribution and deviation
from SPICE predictions with pico-second accuracy. Incorporating Lot-Wafer ID or time-axis parameters
allows for tracking process adjustments and assessing control stability.
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Fig. 6-4 RO SPICE-Silicon Correlation

With limited measurement flexibility in post-silicon testing and uncontrollable factors like IR drop and
temperature variations, SPICE simulations cannot cover all scenarios. A regression model built on sparse
data can predict unmodeled conditions, enhancing calibration and analysis efficiency, as shown in Fig.
6-5.
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Fig. 6-5 V-F Shmoo and SPICE Correlation
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6.3. Process Monitoring and Optimization

By integrating foundry WAT/CP data with on-chip RO measurements, engineers can track process
variations (e.g., Vth shift, SIDD changes) and assess their impact on circuit performance, as shown in
Fig. 6-6. RO’s high-sensitivity timing data further aids in evaluating process uniformity and local

variability. Key optimization strategies include:

e Process Calibration: Adjust critical process parameters, refine timing extraction (525/Re-K), and align
timing signoff targets to mitigate process drift.

¢ Functional Compensation: Leverage ML-driven binning and dynamically adjust chip parameters (e.g.,
DVFS) to counter process inconsistencies.

e Trend Analysis: Aggregate RO data across batches to identify long-term process trends for

continuous optimization.

°
250PCM ] 7 2.50 PCM
= .
: Split Lots C2 Cc20 C16
{1 A
| A .
: [ o unusual trend
. F15F15 | % \
oy | Y | 2 ' . \ L} A\
< '3 \ .
o | L
o | ; \ |
2] | = ; / ‘ " ) L]
| | & outlier recipe \ i
,:.;,L..____.-._,..‘...:...1 N
__________________ \.
| G e
VO a0
S \ 7
Q ’ «\.\,\(X\\
\ 2
RO Frequency (MHz) Functional Metric

Fig. 6-6 Process Tuning
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6.4. On-Chip Effective Voltage Analysis
6.4.1. Local Voltage Distribution Monitoring

If space permits, high-density ROs can be evenly distributed across the chip, with V-F sweep
measurements used to capture RO frequency, as shown in Fig. 6-7. The frequency is mostly linearly
related to voltage, with process variations affecting the intercept, while the slope remains relatively
stable. Each color in the figure represents the frequency distribution of 24 ROs at different locations
within a single chip.
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Fig. 6-7 On-chip Ring Oscillators (ROs) and V-F Curve

Using this characteristic, the RO frequency difference can be converted into relative voltage variation
to reflect the voltage distribution. However, this method only applies to relative voltage differences
and cannot estimate absolute voltage values. As shown in Fig. 6-8, different RO data can infer the
equivalent voltage at each detection point, with the voltage distribution across a single chip appearing
random and varying between chips.

However, as shown in Fig. 6-9, analyzing data from around 700 chips on the same wafer and averaging
the frequencies at corresponding RO locations reveals a strong correlation between frequency and
location (bold black line), which exceeds the impact of process variations. This trend remains consistent
across SS, TT, and FF process conditions.
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Fig. 6-9 On-chip RO Effective Voltage Analysis
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This indicates a systematic issue or structural defect, possibly linked to factors like metal density, layout
effects, or PDN/Bump distribution, causing uneven voltage distribution. Such factors must be addressed
in the physical implementation flow. Additionally, when analyzing the WID (Within-Die) equivalent
voltage difference distribution across all chips on the same wafer, the trend remains consistent across
various process conditions (SS, TT, FF, or skewed processes like SF/FS). Notably, this equivalent voltage

difference trend persists regardless of overall voltage adjustments, as shown in Fig. 6-10.
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After performing cubic polynomial surface regression on the WID RO mean discrete data points, a

heatmap of the effective voltage contours is generated, as shown in Fig. 6-11. The analysis shows a

strong positive correlation between the voltage difference and power bump distribution density, with

an inherent voltage difference range of -12mV to +6mV (chips powered but not running). Using a third-

party ERA (Early Rail Analysis) tool, tap-current can predict potential issues and identify hotspots, which

may develop into low-voltage regions on the chip.
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This static effect is process-independent and non-random, and its impact on vyield requires closer
monitoring. Addressing voltage distribution issues early in the design phase, rather than relying on late-
stage dynamic IR analysis, can reduce design risks and improve chip reliability and yield.

Bump Assignment

-2

-4

Fig. 6-11 Effective Voltage and ERA Correlation

6.4.2. Compensation Strategy

In the chip mass production process, unexpected results often arise due to various factors, such as
mismatches between SPICE models and silicon, imperfections in the physical design process, overly
aggressive or conservative timing signoff strategies, and improper process control (including production
process parameter drift and wafer non-uniformity). As shown in Fig. 6-12, if significant adjustments are
made to the process parameters for compensation—such as shifting from TT to FF process
parameters—it may meet speed requirements but could lead to exponential increases in leakage
current and power consumption, making the chip performance harder to control with temperature
changes. Therefore, voltage compensation, whether static or dynamic, provides a more predictable and
cost-effective method to balance performance and power consumption.
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Process parameter shifts are not random or Gaussian, but often exhibit mechanical harmonic spins,
which hinder design margin accuracy. These non-random effects, compounded by process and test
environment deviations, introduce randomness, undermining what was thought to be a reliable
strategy. Fig. 6-13 shows that wafer characteristics like RO frequency or SIDD change with voltage and
temperature, revealing that local unevenness cannot be corrected by voltage compensation alone, and
performance gradients cannot be eliminated through this method.

Temperature Effect

Voltage Effect

Fig. 6-13 RO Frequency vs. Temperature and Voltage Effects



@ DIGWISE TECHNOLOGY Empowering DTCO Innovation with Al and Machine Learning

In advanced chip design, integrating on-chip monitors (OCMs) with machine learning-based
compensation mechanisms is crucial for enhancing performance and reliability. OCMs collect real-time
parameters like voltage, frequency, and temperature, providing precise data for both static and
dynamic compensation. Fig. 6-14 illustrates a multi-layered performance compensation strategy,
including process optimization, chip binning, voltage-frequency configuration, and real-time

adjustments, to improve chip performance and stability.

Process and Liberty Analysis
(S2S, re-K)

DTCO.GenAl

Process Recipe Opt.
(WAT/CP, DTCO.ML)

Bining Strategy
(System, PMIC, Price)

On-chip V/PLL Config
(RO/NIT Sensor)

On-chip V/CLK Adjustment

(BDynamic Slack Alert)

Fig. 6-14 Multi-level Compensation Strategy

By combining static RO with machine learning, designers can optimize process parameters, implement
chip binning, and achieve system-level voltage compensation, balancing pricing and production
capacity, as shown in Fig. 6-15. Real-time feedback from dynamic slack-alert circuits enables voltage
and clock adjustments, balancing performance, power, and reliability. This method not only benefits
high-performance computing chips but also boosts design efficiency and energy utilization in loT and

embedded systems.
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6.4.3. Dynamic Timing Slack Alerts and.Layout

RO-based sensing solutions typically have slower response times and cannot directly reflect timing slack
in data paths. To address this, a dynamic timing slack alert system based on the RAZOR architecture, an
advanced feature of chip monitoring IP, optimizes setup alert (SA) and hold alert (HA) configurations.
This system measures timing slack at different locations in real-time based on internal voltage and
temperature variations. The results are compiled into high-resolution bits, reflecting setup and hold
time uncertainties in data paths. The system’s serial output supports dynamic voltage and frequency
scaling (AVS), effectively tracking timing signoff, avoiding overdesign, and identifying minimum
frequency errors, supporting timing verification in physical design.

In practice, it is recommended to perform preliminary STA and IR analysis after P&R in the physical
design phase. For areas with higher IR risks, select sub-critical timing paths with larger margins and
replace the last stage DFF with SA/HA to ensure that penalties from additional capacitance or routing
do not affect the performance of the critical path, as shown in Fig. 6-16.

In advanced technology nodes, timing signoff becomes more challenging, requiring careful
consideration of process variations, temperature changes, and static/dynamic IR hotspots to avoid
overdesign. Traditional methods typically rely on adding uncertainty to the clock tree and derating data
path timing, which can lead to overdesign. To address this, embedding ring oscillators (RO) and
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simulating key data paths on-chip, correlating internal chip features such as leakage/dynamic currents
(SIDD/DIDD) and maximum operating frequency (Fmax) during CP and WAT testing, simplifies timing
signoff and introduces Design Technology Co-Optimization (DTCO) for advanced node circuit design.

slack (2) dynamic IR hot spots

(1) sub critical path
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swap regular FF to SA or HA for
the maSt (1) sub critical paths, or
critical (2) dynamic IR hot spots

negatiye

Setup Alert (SA) Razor (HA)

+ -]
s IR Bl

signature | é1 | 2 | —

Fig. 6-16 Dynamic Slack Alert Integration Guideline

6.5. GRO Automation Tool and Verification Process

In the future, embedding monitoring circuits within chips will become widespread. However, due to the
lack of standard specifications, the industry needs a reliable, convenient solution to automatically
generate monitoring circuit IPs and test program samples. By combining standardized data from tests
like eFuse, WAT/CP/Aging, and machine learning, scalable EDA applications such as chip performance
grading and voltage/frequency compensation will emerge, requiring further planning and development.

50



@ DIGWISE TECHNOLOGY Empowering DTCO Innovation with Al and Machine Learning
CCS liberty I 1
PVT corners

- < .
Metric LUT | Metric LSC ClassMetric
(PVT corners) & (PVT corners)
=
e

ClassLiberty

JSON

PVT corners

Configuration Verilog Test-bench
v
J .
Synthesis
v
v
SPICE Target Spec.

Fig. 6-17 GRO Automation Flow

Fig. 6-17 shows the proposed open-source EDA tool (https://github.com/dipsci/DTCO/tree/main/GRO)
and its automated workflow. The tool reads a configuration file that defines target Delay-Line,
frequency, and maximum count values. It automatically extracts Liberty data, retrieves timing and I/0
information for key components, and generates the RO monitor RTL based on the target settings.

Additionally, the tool automates synthesis and test environment generation for circuit functionality and
integrity verification, as shown in Fig. 6-18. The generated RO monitor includes multiple Delay-Lines,
and after hardening and LVS verification, RC parameters are extracted for SPICE simulation. The
simulation results serve as a calibration reference for SPICE-silicon comparison in post-silicon
measurements.
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Chapter 7. Data Analysis and Machine Learning Platform (Copernic™)

7.1. Data Standardization and Visualization

DTCO.ML is an innovative open EDA ecosystem (https://github.com/dipsci/DTCO/tree/main/copernic)
aimed at enhancing data correlation and visualization in chip production and testing. With the current
lack of unified data formats and standards in the industry, we must define a scalable format and develop
conversion tools for seamless cross-domain data mapping. This improves data processing efficiency,
ensures smooth integration of test data from different sources, and supports advanced methods like
machine learning and neural networks. Ultimately, it optimizes chip energy efficiency and production

capacity, leading to more accurate process and design decisions, as shown in Fig. 7-1.
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To ensure high-quality test data, pre-planning during design is crucial, such as integrating PVT sensors
or embedding RO (Ring Oscillator) with custom circuit IP into the design process. This enables
continuous collection of process and circuit data during mass production, forming a strong foundation
for process optimization, timing analysis, and yield improvement.
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Fig. 7-2 Empowering DTCO.ML Applications
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The DTCO.ML/Copernic platform offers intuitive visualization tools to track and analyze test data
distribution and uniformity in wafer production. Using statistical and regression analysis, it estimates
local variation (OCV) within the chip and optimizes design margins to reduce over-design. Cross-
dimensional data correlation identifies optimal design parameters, offering chip performance binning
and voltage compensation metrics to enhance yield and reliability. Data visualization showcases
physical characteristic distributions and trends, helping engineers quickly identify the optimal process
parameter ranges, as shown in Fig. 7-2.

7.2. Cross-Domain Mapping of Multi-Dimensional Data

Using Lot-Wafer-ID for mapping and standardizing WAT (Wafer Acceptance Test) and CP (Chip
Performance) data reveals key correlations between wafer tests and chip performance, as shown in Fig.
7-3. This method identifies performance variations across process conditions and pinpoints key process
variables that impact chip performance, enabling precise adjustments to design and process
parameters, optimizing chip quality, yield, and supporting process improvements.
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7.3. Design Flow Integration Strategy

The DTCO.ML design flow incorporates SPICE-Silicon wafer correlation, process variation analysis,
library cell optimization, and timing Re-K based on actual WAT parameter distribution. This enables
effective defense strategies to enhance chip yield and reliability. Through WAT and CP/FT mapping,
correlation analysis, and modeling, we quickly identify optimal process recipes and refine the binning
strategy.

7.3.1. WAT-aware Timing Re-K

In current process technologies, real process parameters often deviate from SPICE models, as shown in
Fig. 7-4. Especially under non-standard operating voltages, critical clock components may experience
significant distortion. Relying solely on timing Re-K under varied voltage conditions can lead to
functional failure. Analyzing WAT-SPICE model deviations is essential for accurate timing extraction
from the standard cell library. By correlating the two, we adjust simulation calibration, timing margins,
and defense strategies, dynamically adapting to the chip’s actual conditions. Understanding mass
production trends and implementing defense strategies enhances yield and competitiveness.

ULVT (20)

Isat_P3UL

<3 - ; SPICE FF

: | il

3.4 35 3.6 37 38 39 40 41 42 43 4.4
Tsat_N4UL

Fig. 7-4 WAT-aware SPICE-to-Silicon Correlation
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7.3.2. WAT-CP Mapping and Correlation Analysis

The main challenge with WAT is insufficient data samples, leading to biased conclusions. To address
this, we expand the data set using feature surface regression and correlate WAT with CP/FT/SLT test
data. By plotting WAT’s N/P process parameters (e.g., Vsat, Isat) on the XY axes and CP/FT/SLT test
features (e.g., RO, leakage current, yield, Fmax) on the Z axis, we create a contour map to visualize the
impact of WAT parameters on chip performance. Through cross-dimensional mapping and
dimensionality reduction, wafer fabs and chip design engineers can align process and design strategies,
ensuring consistent optimization, as shown in Fig. 7-5.
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Fig. 7-5 WAT/CP Correlation and Process Window Optimization

7.3.3. OCV Analysis

A single RO per chip is enough to estimate wafer uniformity, voltage differences, and OCV through
machine learning. During CP testing, we calculate RO differences between die-to-die. As shown in Fig.
7-6, by selecting RO at the same coordinates on two wafers and gradually increasing the distance, we
can use regression analysis to extrapolate to zero distance (D0) and estimate OCV, thus assessing on-
chip variations.
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Fig:7-6 On-chip Sensor and OCV Regression

7.4. OCV Analysis and Design Margin Optimization

System-level static chip performance gradients may result from surface irregularities caused by optical,
chemical, and mechanical effects during wafer fabrication. As shown in Fig. 7-7, each chip contains six
Ring Oscillators (RO). Using RO data from all chips on the wafer, we construct a feature surface with the
Z-axis representing the RO frequency. A magnified view shows the RO frequency distribution across
four adjacent chips, with the light pink surface representing the average frequency of the six ROs (in
different colors).

This average surface reveals the performance gradient and on-chip variability (OCV), which affects chip
performance uniformity. Non-random variations like these cannot cancel out. Additionally, random
local fluctuations from ROs at different locations further exacerbate local performance variation.
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The non-randomness mentioned above can distort traditional timing signoff tools, as shown in Fig. 7-8.
Local voltage gradient effects must be controlled to prevent excessive resource usage when handling
traditional global PVT corners. Unless wafer foundries improve process uniformity or chip designers
provide costly local voltage sources (LDO arrays), local voltage gradients cannot be fully eliminated.
Combining system-level binning with voltage compensation, it's recommended to relax defense

boundaries (e.g., 1.65 sigma) to avoid overly conservative margins that could impact energy efficiency
and competitiveness.
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7.5. Post-Silicon Analysis and Optimization

By reconstructing wafer-level physical parameter surfaces from CP's XY coordinates, as shown in Fig.
7-9, three key offsets and non-random variations are typically observed:

Coarse-grained Harmonics: Wafer data (e.g., SIDD) exhibit donut-shaped patterns of low-frequency
sine waves, with uneven deposition tilt. Certain polishing steps create Polish Patterns, amplifying non-
uniformity and revealing system-level defects from specific process steps, as shown in Fig. 7-10.

Test Environment: Analog components like V/T Sensors, designed to mitigate PVT variations, highlight
deviations from test environment factors, such as mismatches in Load Board or Probe Card resistance,
creating Test Site Patterns. However, PVT variations often remain due to significant Leakage Uniformity
gradients. RO measurements capture system-level unevenness, compounded with low-frequency
oscillations, revealing non-randomness common in production testing, as shown in Fig. 7-11.

Litho-effects: Analyzing physical location and data reveals that lithographic effects or test board
resistance mismatches significantly affect electrical characteristics and delays. Mask exposure
boundaries often show regular peaks in SIDD, corresponding to regular valleys in cell delays.

Fig. 7-9 Wafer-level Feature Surface
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Chapter 8. Chip Performance Rating Strategy and Optimization (Binning-PG™)

8.1. Impact of Binning Strategy on Productivity

Binning strategy in semiconductors classifies chips based on performance characteristics to ensure
stability and reliability across varying conditions. Its impact on productivity includes:

Improved Yield and Test Efficiency: Accurate binning enhances yield, reduces defective products, and
minimizes test time and costs.

Optimized Production Efficiency and Stability: Binning helps tailor the production process to chip
performance needs, improving efficiency and reducing disruptions.

Enhanced Product Quality and Competitiveness: Proper classification ensures chips meet performance
standards, boosting quality, consistency, and competitiveness. It also supports pricing strategies by
setting performance-based price bins, maximizing revenue.

In the case of multi-core machines (such as BTC mining machines [2]), binning categorizes machines
based on computing power. After classifying the machines, their total computing power (Tera-hash rate,
TH) is tested. As shipment volume grows, the cumulative computing power (cumulate TH) increases.
This metric helps assess binning strategies and identify the most effective method for maximizing
computing power.

As shown in Fig. 8-1, comparing cumulative computing power (cumulate TH) from different binning
methods helps identify the optimal strategy for balanced shipments, minimizing performance
fluctuations, and maximizing cumulative power to meet demand and boost shipment efficiency. These
strategies enhance overall product performance, energy efficiency, and productivity.
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Fig. 8-1 Multi-core Machine Shipment and Cumulative Computing Power Evaluation

8.2. Chip Characteristics Analysis and Challenges

Traditional binning methods typically use a two-dimensional pipeline strategy based on chip
performance (e.g., Fmax) and SIDD leakage current, as shown in Fig. 8-2. For instance, SIDD is used for
coarse segmentation, followed by fine segmentation based on functional patterns' performance. This
approach heavily relies on engineers' time for coding and trial-and-error testing to define segmentation
conditions and boundaries. However, it cannot ensure consistency in voltage or temperature sensitivity
across chips. As shown on the right, even within the same group, their performance in other
dimensional indicators may vary significantly.

In reality, factors influencing chip performance often extend beyond two or three dimensions, as shown
in Fig. 8-3. The performance surface of the same chip under different voltage and temperature
conditions is typically non-linear. For example, under a fixed voltage, chips at certain frequencies may
show similar performance (as seen in the pink cutline of the V-F curve). However, temperature changes
may cause dramatic, cliff-like performance shifts.
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To address the challenge of high-dimensional data in chip performance clustering, K-means clustering
is often used to group data by minimizing variance within each group. However, this method has some
shortcomings, particularly at the machine level:
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Ignoring Feature Importance: Traditional algorithms like K-means treat all dimensions equally, lacking
the ability to identify differences in feature importance. This requires manual intervention, such as
feature augmentation or weight adjustments, which can lead to increased workload and reduced
accuracy. As shown in Fig. 8-4, adjusting weights for six-dimensional data allows K-means to better
account for the impact of SIDD weight changes in chip features.

Discreteness of Multi-dimensional Features: Multi-dimensional features in chip data are often discrete
and may form distinct high-dimensional manifolds, making it difficult to differentiate between them.
This is especially true when dealing with subtle variations or anomalies in chip characteristics, which K-
means may fail to detect, particularly when handling PVT sensitivity differences.
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Traditional methods typically use a fixed voltage configuration of frequency and performance as
features for K-means clustering (e.g., the pink dashed line in Fig. 8-3). However, this approach struggles
to differentiate at the machine level, especially with high-dimensional discrete features. To improve
this, we can use discrete grid points to build interpolation surfaces, as shown in Fig. 8-5. This enhances
the resolution of grid points, improving the continuity and representation of the feature space.
Additionally, adjusting the weight of the SIDD feature increases its impact during clustering, effectively
addressing the challenge of distinguishing high-dimensional discrete features.

Original VF surface SIDD scaled VF surface

die #10

Fig. 8-5 V-F Grid Interpolation

In practical applications, feature augmentation techniques (e.g., interpolation) can expand the original
6-dimensional CP test feature space (including RO, SIDD, and 4 performance indicators) into dozens of
dimensions for clustering, ensuring accurate chip performance evaluation. This enhancement
significantly improves clustering and provides a more reliable basis for machine-level performance
differentiation.

8.3. Binning Policy Generation (Binning-PG™)

Binning policy generation is a systematic process for categorizing chips based on their performance
characteristics to ensure consistent performance under various operating conditions. The key steps
include:

65



@ DIGWISE TECHNOLOGY Empowering DTCO Innovation with Al and Machine Learning

Data Collection and Preprocessing: Collect multi-dimensional performance data (e.g., frequency,
power, SIDD leakage) from chips, clean and standardize the data to ensure consistency.

Feature Extraction and Clustering: Analyze key features and use clustering algorithms (e.g., K-means,
DBSCAN) to group chips by performance, identifying performance patterns and binning boundaries.

Strategy Adjustment and Optimization: Optimize the initial clustering results based on production
needs, adjusting bin ranges to meet performance targets.

Strategy Validation and Implementation: Conduct small-scale tests or simulations, adjust based on
results, and implement the strategy in large-scale production to ensure effectiveness and stability.

In the early stages, unsupervised learning using initial characteristics like WAT and CP/FT is employed
to group chips with similar traits. This may involve human-in-the-loop (HITL) active learning to refine
clustering. As production data accumulates, initial clustering results evolve into ground truth,
supporting supervised learning to further optimize the binning strategy.
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Fig. 8-6 Binning Policy Generation
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8.4. Automated Policy Generation and Optimization

The goal of binning strategy automation is to improve chip classification efficiency through precise data
analysis and algorithm application, enhancing productivity and product quality. Key objectives include:

Performance Evaluation and Qualification Criteria: Quantify chip performance with composite metrics
(e.g., SIDD, >Fmax, cumHash:=YFmax * pass_core, SIDD-std, cumHash-std) to ensure binning reflects
chip behavior under various conditions and establish clear qualification standards, as shown in Fig. 8-7.

Clustering Algorithm and Optimization: Use hybrid K-means clustering to automate grouping,
classifying chips by performance similarity, and improving intra-group homogeneity. This enhances
binning accuracy, reduces manual intervention, and improves process automation and stability.

Effective Workflow Methodology: Design CP/FT testing processes based on successful projects,
providing consistent binning guidance for future projects, enabling rapid adaptation of optimal
strategies and long-term production efficiency improvements.

mean:0.529, std:0.458 mean:11.087, std:20.395 mean:5.821, std:7.278 U-std: represents the uniformity
The distribution of quantities max:3.182, min:6.0 max:132.988, min:0.0 max:53.894, min:0.0 \
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Fig. 8-7 Key indicators for Chip Classification

Fig. 8-8 illustrates a hybrid strategy combining K-means clustering with Human-in-the-Loop (HITL) to
enhance clustering accuracy and efficiency. HITL techniques, including feature augmentation (e.g.,
weight adjustment and interpolation surface construction), generate fine-grained clustering results
(Soft Bin) that serve as the benchmark (Ground Truth) for active learning, allowing flexible adjustment
of clustering standards in the early stages and setting the foundation for model training.
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Fig. 8-8 Binning Policy Optimization Flow

Next, Ground Truth data is used with supervised learning techniques (such as SVM, random forests, and
neural networks) to train classifiers and create precise binning strategies. This optimizes clustering,
reduces bin count, improves efficiency and market value, and balances accuracy with production costs.
The approach automates and refines strategy design, accelerating iteration cycles and boosting chip
manufacturing flexibility and efficiency.

8.5. On-chip Self-binning Application

On-chip Self-binning (OCSB) is an innovative technology that integrates self-testing and performance
evaluation directly within the chip, enabling automatic classification during production. It enhances
binning efficiency, reduces testing costs, and minimizes reliance on external equipment. Key features
include:

Built-in Self-binning: The chip integrates a self-test module to automatically measure performance
parameters (e.g., RO frequency, effective voltage, dynamic slack) under various conditions, providing
rapid and accurate data.

68



Empowering DTCO Innovation with Al and Machine Learning

4%% DIGWISE TECHNOLOGY
AN

Reduced Testing Costs: By utilizing self-test data, the chip analyzes performance and slack in real-time
and automatically determines binning, reducing reliance on external tests and human intervention,
thus improving efficiency and automation.

Real-time Performance Evaluation: Using real-time monitoring circuits and Al inference, the chip
adjusts binning dynamically based on the operating environment, enhancing reliability and market
competitiveness.

OCSB uses neural networks to infer performance within the chip’s memory and MAC units, enabling
automated binning. The neural network is trained pre-production to understand the relationship
between performance and binning, storing results internally. This technology reduces testing time,
minimizes external equipment dependency, and allows flexible adjustments, boosting efficiency,
product quality, and cost-effectiveness, as shown in Fig. 8 9.
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Fig. 8-9 On-chip Self-binning (OCSB)
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Part lll: DTCO.GenAl™ - Generative Al-Driven Chip Design Innovation

This section explores the applications of Generative Al in semiconductor and chip development,
covering GAN, Diffusion Models, high-o Monte Carlo simulation acceleration, and WAT super-resolution
technology [3][4][5].

Chapter 9. Generative Al and DTCO Integration (DTCO.GenAl™)

9.1. Limitations of Traditional Modeling Methods

Traditional models often assume Gaussian distributions, ignoring that real chip data typically follows
skewed-normal or log-normal distributions. They also overlook interrelationships between vectors in
high-dimensional space. As shown in Fig. 9-1, while individual features may follow population
distributions, their combinations in high-dimensional space may lose correlation.

Real-world data concentrate on low-dimensional manifolds within high-dimensional space. Assuming
independence between features, high-dimensional distributions may become unrealistic as
dimensionality increases. The key to addressing this is considering feature dependencies and using
more suitable techniques for high-dimensional modeling.

random samples original samples

Log-normal | =0 © o @n®

Normal distribution

Fig. 9-1 Interdependencies of Physical Quantities
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The assumption of independent feature distributions often fails to accurately reflect the complexities
and interrelationships in the chip manufacturing process. To more effectively simulate chip behavior,
it’s crucial to consider non-Gaussian, skewed, or log-normal distributions, while fully accounting for
interdependencies in high-dimensional space.

The numerous process parameters in wafer fabrication create complex relationships with wafer or chip-
level test data, making traditional modeling methods insufficient. As shown in Fig. 9-2, even with a
complete understanding of the feature distributions and relationships at the chip level, the lack of
coordinate information results in the loss of true process uniformity at the wafer level. Consequently,
the distribution of high-dimensional feature vectors lacks realism, leading to significant discrepancies
between production and simulation data.
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Fig. 9-2 Dissipation of Feature Spatial Continuity

This discrepancy hinders our understanding and simulation accuracy of the chip manufacturing process.
To address this, advanced modeling methods are needed to account for the complexity of process
parameters and wafer coordinates, enabling more accurate simulations and reliable production data.
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9.2. Following the Trail: Multivariate Normal Distribution

Incorporating feature correlations (e.g., the covariance matrix in GMM) effectively captures
dependencies between high-dimensional features, leading to a more realistic data distribution. As
dimensions increase and more feature correlations are modeled, the generated distribution aligns
more closely with real data.

For example, a simple correlation analysis report between the process and chip performance may be
based on limited early-stage data, such as 420 chip test results from six wafers, including TT and skew
wafer data.

4 feature correlation matrix (420 smaples, sub:1)
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Fig. 9-3 Multivariate Feature Correlation

Fig. 9-3 shows a typical correlation matrix mapping WAT site ID to CP data, with numbers representing
Pearson correlation coefficients. Using this matrix, we can apply Multivariate Normal Distribution (MVN)
to quickly create an approximate high-dimensional model, generating dense data to enhance trend
analysis, boundary profiling, and decision confidence. Fig. 9-4 demonstrates 10,000 data points
randomly generated with MVN based on this correlation matrix.
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Example 9-1 Multivariate Normal Distribution

import numpy as np
import pandas as pd

p=1[0.1, 0.15, 3.53, 0.95] # features mean
o = np.array([e0.11, 0.1, 0.37, 1.4])/6 # min-max 6 sigma (Gaussian)
0l,02,03,04 = ©

# Pearson coefficient based on the scatter metrix
p = [np.array([-0.047, ©.52, -0.52]),

np.array([ 0.039, -0.02]),

np.array([-0.8])]

(p12,p13,p14), (p23,p24), (p34,) = p

# covariance matrix

3 = [[o1%*2, pl2*0l1*02, pl3*cl*o3, pld*ol*c4d],
[pl2*01*c2, o02**2, p23*02*03, p24*cg2*c4],
[p1l3*01*03, p23*02*03, 03**2, p34*g3*04],
[pla*ol*c4, p24*c2*c4, p34*c3*cd, o4**2]]

data = np.random.multivariate_normal(u, X, 10000) # generate 10K samples

# convert to Dataframe
dt = pd.DataFrame(data, columns=['Vtl ULVT_N', 'vtl ULVT_P', 'RO', 'SIDD'])
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Fig. 9-4 Feature Distribution and CDF Contours
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9.3. Virtual Silicon Data in DTCO (DTCO.VS)

Design Technology Co-Optimization (DTCO) is vital at advanced nodes, but designers and EDA
developers often lack reliable process and test data. In such cases, virtual silicon data provides high-
quality, realistic data while preserving confidentiality. By analyzing chip characteristics like leakage
current and performance across frequencies, designers can pinpoint defects and optimization
opportunities. The generation of large volumes of silicon data enhances chip performance evaluation,
boosts product competitiveness, and optimizes wafer performance.

Fig. 9-5 shows the use of virtual chip data, which helps increase trust levels and identify the trade-off
between yield and design margins, guiding future design and capacity optimization.

PCM 3D (2,976 wafers, 9,033,815 samples, sub:1)

PCM Contour

PCM Density

SIDD

ROuU

Fig. 9-5 CDF Contour

Fig. 9-6 illustrates a typical two-dimensional binning strategy for mass production. By leveraging virtual
chip data that closely mirrors real-world scenarios, we can accurately predict performance grading and
compensation, boosting optimization efficiency, increasing capacity, and reducing costs, while ensuring
product quality stability, reliability, and competitiveness.
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Bin Yield Assessment

SIDD

ROu

Fig. 9-6 Speed and SIDD Binning Strategy

Fig. 9-7 shows the application of cross-dimensional feature contours, where WAT N/P process
parameters form the XY axis base, and CP performance and power data serve as the Z axis. This method
acts like a literary translator, bridging terminology gaps between process and chip design. With virtual
chip data, engineers can balance design goals and optimize processes and performance. By analyzing
cross-dimensional data and correlations, such as using wafer-level parameters, we can offer process
adjustments to improve chip performance while maintaining physical characteristics (e.g., SIDD and RO
frequency).

Additionally, the model's cross-dimensional correlations provide valuable insights for DTCO. As shown
in Fig. 9-8, correlations between wafer-level process parameters (e.g., N-MOS and P-MOS threshold
voltage Vth) and chip-level performance (Fmax, SIDD) highlight significant relationships. Variability in
N/P Vtl shows negative slope coefficients and intercepts. This approach functions like a dynamic oral
translator, facilitating cross-dimensional correlation analysis and data interaction (cross-probing),
allowing us to effectively balance energy efficiency targets with process optimization.
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Fig. 9-8 Multi-Feature Cross-Probing
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Chapter 10. Virtual Silicon Data Generation Technology (DTCO.VS)

With the rapid growth of silicon data, machine learning plays a vital role in enhancing chip performance.
Analyzing the distribution of key wafer characteristics helps predict process parameters and chip
behavior accurately. However, real silicon data acquisition and sharing face challenges due to
commercial confidentiality. This chapter presents a high-quality silicon data generation method,
combining Chip Performance (CP) and Wafer Acceptance Test (WAT) data, validated through various
metrics to create a comprehensive dataset that supports Design Technology Co-Optimization (DTCO).

Generative Artificial Intelligence (Generative Al) is used to learn chip and wafer test features, addressing
the challenge of real silicon data collection. By leveraging generative models to capture physical
characteristics, designers can simulate mass production testing, develop binning strategies, and
optimize designs while overcoming data sharing challenges.

This chapter introduces chip and wafer test data modeling using Generative Adversarial Networks (GAN)
and Diffusion Models, and explores the application of chip virtualization in secure data packaging,
compression, and cross-domain delivery. These methods enable designers to generate realistic design
examples, perform DTCO, enhance production capacity, and achieve energy-efficient designs.

10.1. Dataset Preparation

The dataset used in this study includes data from 3,984 wafers, totaling around 12 million chip data
points. Outliers beyond 3o and missing data are removed, while chips with process uniformity defects
are retained for model training. To maintain confidentiality, the data is normalized to a range of -1 to
1. The dataset, containing chip coordinates and 14 features, is converted into a multi-channel image
format, resulting in a size of 65x66x14 (height x width x features).

TABLE | outlines the 14 features, six from chip tests (CP) and eight from wafer acceptance tests (WAT).
Each feature represents a specific physical property, such as CP1 for leakage current and CP2 for chip
speed. Four other frequency-related features (CP3 to CP6) describe functional accuracy at 300MHz,
400MHz, 500MHz, and 600MHz. Functional accuracy refers to the number of processor cores that
produce correct outputs at each frequency. These features offer valuable insights into chip behavior,
supporting design margin analysis and optimization..
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TABLE I: Features of the Dataset

Feature | Description Unit
CP1 Leakage current HA
CP2 Chip speed Hz
CP3 Functional accuracy at 300MHz Yo
CP4 Functional accuracy at 400MHz Yo
CP5 Functional accuracy at SOOMHz Yo
CP6 Functional accuracy at 600MHz Yo
WAT1 | Gate threshold voltage of low threshold NMOS \Y%
WAT2 | Gate threshold voltage of low threshold PMOS Vv
WAT3 | Gate threshold voltage of ultra-low threshold NMOS \%
WAT4 | Gate threshold voltage of ultra-low threshold PMOS \Y
WATS | Drain current of the low threshold NMOS mA
WAT6 | Drain current of the low threshold PMOS mA
WAT7 | Drain current of the ultra-low threshold NMOS mA
WATS | Drain current of the ultra-low threshold PMOS mA
~10M samples Test Features CP(2) + WAT(8) Dataset (per wafer)
LWID X Y CP-01 CP-82 WAT-01 WAT-©82 WAT-03 . -
LOTOl_e1 2 24 5 1421 10 5 8 I
LOTe1_e1 6 25 3 3ele 57 63 57 Feature 1
LOTOl_e1 9 14 4 2733 22 53 59 C H
LOTOl 1 11 29 4 2999 59 63 64 Feature 2
LoTel e1 13 36 4 3047 62 63 63 / l
o Feature 3
LOT21 @1 58 4@ 5 3114 4 58 63 ¢ .
LOT21 61 61 38 4 2880 36 57 63 : /'\
LoT21 el 65 32 3 2681 63 64 30 “ Feature C w
C (features)

Feature grid (per wafer)

B
(batch size)

— O —»

feature grid
(per-wafer)

(B, H, W, C)
e—p—

Fig. 10-1 Dataset Conversion

As shown in Fig. 10-1, the figure illustrates converting wafer data into a multi-channel image format.
The original CP and WAT test data are transformed into 2D images with multiple feature dimensions
(parameter C). The size of C is directly related to model size, and training time increases non-linearly
with C. The dataset in the legend includes 8 WAT measurements and 2 CP measurements, totaling 10
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dimensions (C=10). Notably, the wafer is circular, but the data is represented in a rectangular format,
with data outside the wafer boundary filtered using a mask to maintain analysis accuracy.

To further augment the training set, slight angle rotations are applied, especially useful when data is

limited during early mass production. This method increases data diversity and enhances model

stability. By simulating potential rotational defects and process parameter distributions, as shown in

Fig. 10-2, we can capture key features of the chip manufacturing process, improving the model’s

training effectiveness.
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Fig. 10-2 Data Augmentation
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10.2. GAN-based Virtual Silicon (GAN-VS)

This section explains how the GAN model is used to model multi-dimensional test data from the chip
manufacturing process, covering chip performance, wafer process characteristics, and potential defects,
to accurately capture process defects and parameter uniformity.

10.2.1. GAN Model

As shown in Fig. 10-3, the generator consists of convolutional layers and outputs multi-dimensional
images through a Tanh layer to simulate chip images. The discriminator uses convolutional layers and
a Sigmoid layer to assess the authenticity of the chip data. The two components work together to
generate high-quality chip data.

During training, we use BCE Loss and minimize the difference between generated and real chips through
gradient descent. To enhance training stability, Batch Normalization and LeakyRelLU activation are
applied. The Adam optimizer is used with an initial learning rate of 0.001, decaying by 0.9 every 100
epochs. Training runs for 10,000 epochs with a batch size of 20. Ultimately, the GAN model generates
realistic chip data, including chip location, wafer flatness, and process defects, forming a reliable
foundation for simulating and analyzing the manufacturing process.
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Fig. 10-3 GAN Modeling
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10.2.2. GAN Model Performance Evaluation

We evaluate the GAN model by plotting 2D scatter plots of generated and real samples, with feature
combinations as axes. ldeally, the scatter plots should overlap, ensuring that the generated data aligns
with the real data in both individual and joint feature distributions, as shown in Fig. 10-4.

Additionally, we use quantitative metrics, such as Jensen-Shannon divergence (JS Divergence) to
compare the probability distributions of the generated and real data, and the KDE metric to assess the
differences between feature distributions, ensuring the reliability and accuracy of the generated chip
data.

o ral i o real
o fake I o fake

SIDD

VTS_ULVT_ P

ROU VTS_ULVT_N

Fig. 10-4 Feature Scatter Plot for GAN Model Similarity

We evaluate the similarity between real data and GAN-generated samples by comparing their feature
distributions. Using Jensen-Shannon (JS) divergence, lower values indicate greater similarity between
the generated and real samples. The JS divergence between the real distribution P and generated
distribution Q is defined as follows:

1 1
Dis(P||Q) = iDKL(P“M) "’_EDKL(Q“M) 0
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The Kullback-Leibler divergence DKL(P | | M) can be calculated using the following formula:

P
Dy (PIIM) = ) P(x)log

xEX (2)

where M represents the mixed distribution of P and Q, defined as:

M=1 (P+ Q)
2 (3)

Since the JS divergence between the two distributions ranges from 0 to 1, the similarity of the JS
divergence between P and Q is defined as:

Similarity = 1 — Djs(P||Q) @
JS divergence analysis (Similarity=1-JS) shows that on a 10-dimensional dataset excluding CP3-CP6, the
model-generated virtual chip data closely matches real data, with similarity ranging from 0.98 to 1.0.
Additionally, the model exhibits strong robustness and generalization performance for anomalous
datasets. See Fig. 10-5 for details.
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Fig. 10-5 Feature Distribution Similarity (C=10)
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As shown in Fig. 10-6, experimental results reveal that the GAN model's high-dimensional chip data
closely matches real chip data in scatter plots between any two features. The model successfully
captures process variability during process adjustments, marked by yellow, green, and blue circles. In
high-dimensional space, the relationships between features and their joint distributions remain
consistent with the original data.

To enhance the model, we can exclude data irrelevant to mass production, such as intentionally skewed
wafers, to avoid learning anomalies from early process adjustments. Unlike traditional methods, the
GAN model effectively learns nonlinear relationships in the chip manufacturing process, capturing
subtle details and fitting the real data distribution more precisely. Further analysis confirms that the
GAN model accurately captures parameter distributions, wafer-level uniformity, and manufacturing
process details, reflecting more realistic wafer defects, as seen in Fig. 10-7.

Real Data Generated Data
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Fig. 10-6 Feature Correlation Matrix between Generated and Real Silicon
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Fig. 10-7 Wafer-level Feature Uniformity of Generated Silicon

GAN-based methods often face challenges in convergence and instability. While the improved WGAN
(using Wasserstein Loss and removing BatchNorm and Sigmoid layers, as shown in Fig. 10-3) enhances
performance, it still struggles with data distributions that have multiple peaks. Additionally, chip
functional accuracy (e.g., frequency-dependent features like CP3-CP6) typically follows non-Gaussian
distributions, such as bimodal, skew-normal, log, or cosh forms. As multi-core chip performance is
highly influenced by operating frequency, GANs face difficulties in handling such tasks. The next section
will explore how diffusion models can address these challenges.

10.3. Diffusion Model-based Virtual Silicon (DM-VS)

This section introduces the Denoising Diffusion Probabilistic Models (DDPM), which generate higher-
quality silicon wafer data and overcome GAN limitations in multi-core chip performance features.
Evaluating data distribution and quality with JS divergence and Fréchet Inception Distance (FID), the
results show that the diffusion model accurately extracts feature distributions from silicon wafer data,
generating numerous samples to support deeper analysis and accelerate the DTCO process. Compared
to GANs, the diffusion model generates virtual wafers with a data distribution closer to real data on a
14-dimensional dataset, achieving a JS divergence similarity of 0.987 and an FID of 6.28.
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10.3.1. Denoising Diffusion Probabilistic Model (DDPM))

The Denoising Diffusion Probabilistic Model (DDPM) is a generative model that refines noisy samples
into high-quality data by gradually removing noise. Widely successful in text and image generation,
DDPM produces highly detailed and realistic results. Its core concept involves reversing the diffusion
process, starting from noise samples and gradually correcting them to match real data distributions,
yielding high-quality outputs. Fig. 10-8 illustrates the DDPM process, which includes both the forward
and reverse processes, each involving T steps.

In the forward process, DDPM gradually adds Gaussian noise to the data, transforming it into a simpler
distribution (usually Gaussian). This is done step by step, with the initial wafer sample w0 having noise
added at each step, eventually turning into pure Gaussian noise wT'. The network learns how to add
noise, enabling accurate predictions in the reverse process.

In the reverse process, the model gradually reverses the forward process, recovering the original data
distribution from the noisy samples. Specifically, the generation of the wafer begins with the noisy
sample wT, which is then input into the neural network along with the time step t=T-1 to predict the
noise added at the current step. Subsequently, the predicted noise is subtracted from wT to obtain
wT-1. This process is repeated for T steps, eventually transforming the noisy sample wT into a high-
quality wafer sample wO.

Reverse Process

‘ﬂ—- ----.‘-----ﬂ‘
Wo Wi W4 Wt

Tlme step Time step
\ t=T-1

Fig. 10-8 Forward and Reverse Processes of the Diffusion Model
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U-Net, commonly used for image segmentation and generation, has the structure shown in Fig. 10-9.
The input passes through a convolutional layer to expand the channels to 16. The model contains two
downsampling blocks that increase the channels to 64, followed by two upsampling blocks that restore
the resolution while reducing the channels back to 16. A final convolutional layer generates the output
with the desired dimensions. Fig. 10-10 provides further details of the ResNet block.
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Fig. 10-9 U-Net of Diffusion Model
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10.3.2. Diffusion Model Performance Evaluation

This section introduces wafer-level evaluation metrics in addition to chip-level analysis. Unlike chip-
level analysis, wafer-level focuses on chips from the same wafer, allowing for a more effective
evaluation of whether the diffusion model successfully captures the complexity of the training data.
This provides a more objective way to compare the data generated by the diffusion model with that
generated by GAN.

In image generation tasks, FID is commonly used to evaluate the quality and diversity of generated data
relative to real data. A lower FID indicates that the generated data more closely resembles the real data,
reflecting higher generation quality. The FID is calculated by passing both real and generated data
through a pre-trained Inception-v3 model and comparing their feature distributions. Fig. 10-11
illustrates the process of transforming wafer data into the dimensions required for FID calculation.

resize

Fig. 10-11 Data Shape Transformation for FID Evaluation

First, the wafer sample of size 65x66x14 is rearranged to 231x260x1, duplicated across 3 channels, and
resized to 299x299x3 using bilinear interpolation. The data is then passed through the Inception-v3
network, and the activation vector from the final pooling layer is extracted to obtain the wafer's vector
representation. After converting both real and generated data into vector representations, their means
(n1, u2) and covariance matrices (C1, C2) are computed. The FID is then calculated using the following

formula:
9 1
FID = [ljuy — p2llz + Tr(Cy + C; — 2(C1C5)2 (5)
Here, the symbol Il-11, represents the L2 norm or Euclidean norm, and Tr(-) denotes the trace of a

matrix, which is the sum of the elements on its main diagonal.
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At the chip level, scatter plots compare the joint distributions of multiple features between real and
generated data. Fig. 10-12 shows the scatter plots for four feature pairs generated by the diffusion
model, where the generated data points closely match the real data points, demonstrating high

similarity in their joint distributions.
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Fig. 10-12 Feature Scatter Plot for Diffusion Model Similarity

Fig. 10-13 shows the distribution of all feature values, with the JS divergence similarity indicated above
each chart. In Fig. 10-13 (a), the GAN-generated distribution underperforms on features CP3, CP4, CP5,
and CP6 due to the multiple peaks in their distributions. The mismatch in peak height and position leads
to lower JS divergence similarity, and the GAN fails to capture the prominent peaks accurately.
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Fig. 10-13 (b) shows the diffusion model’s distribution, demonstrating its superiority in capturing the
real distribution. For features CP3, CP4, CP5, and CP6, the diffusion model accurately reproduces the
peak positions and heights. Specifically, for multi-core frequency performance features (CP3—CP6) with
complex distributions like log or cosh, the GAN achieves a JS divergence similarity of 0.963, while the
diffusion model improves this to 0.987, highlighting its superior performance on intricate distributions.
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Fig. 10-13 Feature PDFs of GAN (a) and Diffusion Model (b)
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o Wafer-Level Analysis

At the wafer level, we assess the differences between adjacent chips along a specific direction to
evaluate how well the spatial variations in the generated data match those in the real data. By
calculating the average differences across wafers, we can quantify the similarity between real and

generated data.

For simplicity, this analysis focuses on the secant along the horizontal direction of the wafer, examining
the average differences between adjacent chips in that direction. Fig. 10-14 shows the average
difference analysis of CP1 and WAT1 generated by the GAN and diffusion model. The x-axis represents
the horizontal coordinates, and the y-axis shows the average difference. The light blue area indicates
one standard deviation range of the real data’s average difference, providing an intuitive comparison

between generated and real data.
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Fig. 10-14 Average Difference Analysis for (a) CP1 and (b) WAT1
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Fig. 10-14 (a) shows the average difference of CP1. For GAN-based methods, the generated data's
average difference often falls outside the standard deviation range, with significant fluctuations
indicating inaccurate patterns. In contrast, the diffusion model keeps the average difference
consistently within the standard deviation range. Fig. 10-14 (b) shows similar results for WAT1, where
GAN-generated data exhibits notable fluctuations, while the diffusion model captures the peak
differences of real WAT1 data. The average difference from the diffusion model stays within one
standard deviation of real data, showing similar spatial variations in both horizontal and vertical
directions.

Table Il compares the FID (Frechet Inception Distance) of virtual wafers generated by GAN and the
diffusion model to real data. The real data's FID is 1.39, calculated by splitting the wafer data into two
equal parts. GAN's FID is 55.13, indicating difficulty in capturing multi-modal distributions, while the
diffusion model's FID is 6.28, closely matching real data and showing a significant improvement in
generation quality. Overall, while GAN performs well on some features, it struggles with multi-modal
distributions. The diffusion model accurately simulates real data's multi-feature distribution, with high
consistency in chip distribution and horizontal secant differences.

TABLE 1I: Quality Comparison of Generated Data

Metric GAN Diffusion model
Average JS divergence similarity 0.963 0.987
FID 55.13 6.28

Chapter 11. Generative Al-Driven Chip Efficiency Optimization and Modeling

11.1. WAT Super Resolution (WAT-SR)

Traditional WAT sampling, due to sparse data points, fails to fully capture the overall process
characteristics, impacting decision reliability and accuracy. Insufficient samples can lead to biased
decisions and reduced parameter adjustment precision. High-resolution CP data reveals significant chip
characteristic differences even within the same exposure range (e.g., 5x7 shot), as shown in Fig. 11-1.
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Fig. 11-1 WAT Sampling Issue

Using the average data from a single lot (25 wafers) as an example, as the number of WAT sampling
points increases (e.g., 80-point full-map), the uniformity of WAT process parameters and CP high-
resolution features becomes clearer and more consistent, as shown in Fig. 11-2. Relying solely on sparse
WAT sampling during mass production (e.g., 13 points or fewer) or linear interpolation would make it
difficult to capture the true wafer surface uniformity. Therefore, careful evaluation of sampling
strategies is needed to ensure sufficient data for more accurate process control and decision-making.

Traditional polynomial regression methods struggle to capture wafer-level process parameter
distributions due to their limited ability to handle high-dimensional, spatially correlated nonlinear
variations, as shown in Fig. 11-3. To improve data quality and decision-making, innovative approaches
such as machine learning or generative models should be adopted.

Fig. 11-4 illustrates how most spatial domain signals can be approximated by summing a few key
harmonics in the frequency domain. Using 3 to 4 different harmonic periods, radii, and phase shifts can
effectively approximate wafer process uniformity and system-level defects like edge effects, volcanic
cones, and concentric circular nonuniformities. The WAT-SR (WAT Super-Resolution) technique
enhances WAT resolution from sparse sampling points using neural networks, capturing true wafer-
level uniformity.
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Fig. 11-2 Full Map Uniformity Comparison of WAT and CP
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Fig. 11-3 Traditional Regression Models Miss Structural Information
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Fig. 11-4 Harmonic in Frequency Domain

The core idea is to use U-Net to convert sparse WAT data (e.g., 13 SITE points) into embedding vectors
via MLP, as shown in Fig. 11-5. These embeddings, combined with high-resolution CP data (such as RO
or SIDD, 65x66 chip count), serve as training samples to generate high-resolution WAT data that closely
matches the original. This approach not only accurately reconstructs wafer uniformity but also captures
defect features in the wafer process.

0

64

Emb;Iding

Fig. 11-5 Embedding 13 Sparse WAT Points Using an MLP
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U-Net effectively balances global structure inference and local detail preservation, as shown in Fig. 11-6.
The latent space captures global process patterns, while skip connections provide local details, enabling
the model to capture both global features and low-level spatial information. For example, the latent
space captures global CP process features but may lose precise location details. Skip connections
address this by passing low-level encoder features directly to the decoder, enhancing the model's ability
to preserve local structure and spatial details.
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Fig. 11-6 U-Net of WAT-SR

Convolutional neural networks, through layer-by-layer compression and feature extraction, facilitate
multi-frequency decomposition and synthesis in the spatial domain while effectively capturing multi-
variance in high-dimensional spaces. By using sparse WAT as embedding vectors and combining them
with high-resolution CP data, the model extracts structural features and details, improving performance.

The model learns the inherent distribution and structure of data through high-resolution CP, accurately
representing wafer uniformity and elevating sparse WAT data to high resolution. This enhances data
resolution, captures true wafer features, and improves process control accuracy and decision reliability.
The challenge of sparse data is effectively addressed, leading to more precise predictions of wafer
uniformity and greater decision confidence. The complete process is shown in Fig. 11-7.
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Fig. 11-7 WAT Super Resolution (WAT-SR) Flow

11.2. High-Efficiency SPICE-Silicon Bias Modeling (He-SSBM)

11.2.1. Design Principle of One-shot SPICE-Silicon N/P Correlation

The RO, located within the chip, includes multiple Delay-Lines (DL) composed of various components.

By analyzing production data, we can assess the differences from the SPICE model, as shown in Fig.
11-8. For example, in a process biased towards FS (NMOS fast, PMOS slow), the DL of P-stacking
components results in a lower post-silicon frequency than SPICE predicts, while N-stacking components

result in a higher frequency. By evaluating the post-silicon measurement or target values from multiple

DLs, we can adjust the SPICE N/P parameters, recalculating the Re-K values to better match actual

silicon behavior.
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Fig. 11-8 RO Integration and S2S Correlation

11.2.2. Design and Signoff Strategy Optimization

During chip physical design, SPICE simulations are conducted on each RO's Delay-Line (DL), including
NOR (P-stack), NAND (N-stack), and INV (N/P balanced). In the mass production phase, RO
measurements reveal performance deviations from the SPICE model, as shown in TABLE Ill. The
challenge is to map these deviations to N/P offsets in SPICE to calibrate timing, Re-K, and implement a
signoff strategy that aligns with actual chip data, enhancing performance and competitiveness.

TABLE 1ll Measured Target Silicon Data

Type DL1 DL2 DL3 DL4 DL5 DLe DL7 DL8 DL9 DL1e
Siliconl Delay 4.068 3.138 3.862 1.924 2.497 1.337 2.947 1.430 1.922 1.026
Power 145.000 548.300 163.100 81.720 577.960 301.500 146.300 107.200 513.700 393.200

Type DL1 DL2 DL3 DL4 DL5 DLe DL7 DL8 DLS DL1e
Silicon2 Delay 6.437 4.971 5.772 3.218 3.790 2.251 4.310 2.395 2.850 1.720
Power 230.400 872.300 244.900 137.100 884.200 511.800 216.200 181.700 770.100 670.600

Fig. 11-9 illustrates the process of adjusting N/P offsets via RO. First, SPICE simulations generate target
data (e.g., RO and SIDD) and perform discrete grid point analysis based on N/P variations. A regression
model is then built to characterize the probability density distribution of large-scale samples, estimating
the N/P offsets that match the chip’s average values (note that there may be multiple solutions that
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satisfy the conditions). The same method is applied to search for common solutions across all DLs (e.g.,
NAND, NOR, INV), determining the N/P recipe with the maximum overlap. Finally, the adjustment
results are validated through correlation with WAT data from mass production.

2. SPICE simulates the target (RO & SIDD) with discrete points of N/P variation

- N on target :
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\ ‘e
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g' 60 1 Points equal to siliconmean i
3 < 18 6. Correlate to the WAT data in MP
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Fig. 11-9 S2S and N/P Bias Prediction

To enhance efficiency and accuracy in N/P offset estimation, we can train an MLP model to optimize

the regression model's performance and improve offset correction precision, as shown in Fig. 11-10.
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Fig. 11-10 MLP for N/P Bias Prediction
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We start by conducting surface regression on a small set of discrete data for each DL. For instance,
Table IV shows the SPICE simulation results of 9 N/P offset adjustment parameters, corresponding to
different delay values in a 3x3 N/P grid. We then construct a regression model from these discrete data
and interpolate to a higher resolution (e.g., 100x100 points) to generate a large sample set for training.

TABLE IV SPICE Simulation Grid with N/P Bias

N P DL1 DL2 DL3 DL4 DLS DLe DL7 DLE8 DL9 DL1@e

e e 2.711 2.184  2.732 1.234 1.742 0.853 2.131 09.916 1.373 0.658

15 e 2.524 1.930 2.314 1.191 1.476 0.821 1.727 ©.879 1.108 0.628

15 15 3.183 2.372 2.592 1.535 1.665 1.0632 1.870 1.138 1.199 0.812

Delay @ -15 2.178 1.669 2.343 0.964 1.483 9.662 1.899 0.707 1.228 0.505
e 15 3.404 2.615 3.183 1.622 1.995 1.123 2.317 1.198 1.497 9.858

-15 @ 2.955 2.272 3.139 1.321 2.002 9.912 2.535 0.97@ 1.650 9.695

15 -15 2.018 1.543 2.024 09.915 1.281 0.628 1.573 ©.673 1.010 9.481

-15 15 3.691 2.844 3.630 1.7@8 2.335 1.184  2.812 1.259 1.830 9.903

-15 -15 2.335 1.791 2.655 1.914 1.678 0.696 2.241 8.741 1.458 08.5308

N P DL1 DL2 DL3 DL4 DL5 DLe DL7 DL8 DL9 DL1@

@ @ 097.460 367.100 114.800 52.210 399.700 190.700 104.998 67.910 363.300 247.600

15 @ 090.100 337.408 97.050 49.900 337.700 183.58@ 85.258 65.350 292.400 238.000

15 15 111.900 415.700 1088.500 64.640 379.700 238.60@ 91.9608 85.050 315.100 309.400

Power @ -15 77.330 290.000 98.690 40.030 341.100 146.40@ 94.450 52.000 327.100 189.600

15 121.580 457.500 130.4008 68.070 457.500 251.400 114.600 89.220 396.000 326.000
-15 © 1904.960 395.300 132.400 55.000 461.600 202.100 126.300 71.480 440.700 261.500
15 -15 71.840 268.9090 85.040 38.150 293.700 139.60@ 77.860 49.750 267.300 181.108@
-15 15 131.5680 496.408 153.000 71.4980 537.700 264.000 139.800 93.340 487.200 341.900
-15 -15 §82.700 310.300 112.000 41.970 387.200 153.400 112.000 54.310 390.700 198.100

Finally, we verify the target and inference results. If no N/P intersection exists between multiple targets,
the problem has no solution, as shown in Fig. 11-11. To account for solutions beyond the N/P variation's
standard deviation, we may need to expand the value range to £50mV or more.

For DL1=6.437 and DL10=1.72, no intersection

s DL1=4.068 at +30mV, so extend to +60mV

DL10=1.026 mmmm DL1=6.437

DL10=1.72

~10 -20
P -
20 5, -30

Check whether DL1=4.068 and DL10=1.026
intersect within £30mV

Fig. 11-11 Search Range Exploration and Data Augmentation
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In an RO instance with 10 DLs (DL1 to DL10), we can compare the target values (Z-axis plane) of DL1-
DL10 against a broader regression surface to identify potential optimal N/P solutions, where the
regression surface intersects the target values. As shown in Fig. 11-12, no intersection was found within
the £30mV range of the target delay values, indicating the need for data augmentation. To achieve this,
the data range may need to be extended to at least £t60mV.

Delay: silicon2
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Fig. 11-12 Target N/P Feasibility Assessment

Fig. 11-13 shows the optimal N/P Bias solution that simultaneously satisfies the delay and power
conditions of all 10 delay lines for the target Silicon2 in Table Ill.

predict target N, P: -39.04, +53.74

mmmm DL 1 1:6.44, p:6.74
wess DL 3 t:5.77, p:6.08
mmmm DL 5 t:3.79, p:3.99
mmmm DL 7 1:4.31, p:4.49
mmem DL10 t:1.72, p:1.76
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Fig. 11-13 One-shot SPICE-Silicon N/P Bias Prediction
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11.3. High-Fidelity Generative Monte Approximation (HZ-GMA)
11.3.1. Limitations of Traditional Monte Carlo Methods
Traditional SPICE Monte Carlo simulations encounter challenges in identifying high-decision boundaries:

e Sample Sparsity: High-sigma regions, being low-probability events, are difficult to sample effectively,
leading to insufficient or uneven distribution, hindering accurate estimation.

e High Computational Demand: Due to slow convergence, high-sigma analysis requires many samples,
consuming significant computational resources and increasing simulation time, especially in large-
scale circuits.

o Parameter Correlation and Nonlinearity: In high-sigma regions, complex parameter relationships
and nonlinear behaviors increase uncertainty, making traditional methods ineffective.

11.3.2. Innovative Application of Generative Neural Networks

When a high-dimensional hypersurface (network 8) is projected to lower dimensions (e.g., 3D),
topology deformation may occur, causing loss of continuity. As shown in Fig. 11-14, the conic
hypersurface may lose its original structure. However, if the data's inherent relationships (e.g.,
monotonicity) are preserved, generative models like cVAE or GAN can learn smoother and more
interpretable latent distributions.

If 8 is monotonic, Gaussian-sampled NP and RO give
a smoother distribution (e.g., cVAE, GAN).

355

Given NP variants and RO
(delay) measurements, = |
Generative models quickly create high-confidence
train network @to predict s decision boundaries (>30).

RO = &N, P)

3D Saddle Surface with Intersection Contour 2D Contour Slice at Z = 0.5

3
discontinuous in lower dimension

2

Real NP variants are not
independent Gaussian.

-3 -2 -1 ° 1 2 3

A smooth surface @in high dimensions may
appear discontinuous in 3D.

Fig. 11-14 Dimensionality Reduction and Smoothness Preservation
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Given N/P variations and RO measurements, we train the network 6 to predict RO=6(N, P). However,
actual N/P variations are not independent Gaussian distributions. If 8 is monotonic, Gaussian N/P
sampling can predict a smooth RO distribution that closely resembles the original distribution. This
capability is embodied in generative models like cVAE and GAN. The advantage of generative models
lies in their ability to quickly create high-confidence decision boundaries (>30), significantly enhancing
prediction accuracy and stability.

Example 11-1 XOR2D1 Power Modeling and KDE Density

# Model the power distribution of XOR2D1 using a two-component Gaussian mixture.
import numpy as np

import matplotlib.pyplot as plt

from scipy.stats import gaussian_kde, norm

def sigma_percentage(self, sigma):
"'"'return left and right % boundary based on the specified sigma value'''
return stats.norm.cdf((-sigma, sigma))*100

def featureKDE(v, res=100):
kde = gaussian_kde(v)
t = np.linspace(min(v)-v.std(),max(v)+v.std(),res)
p = kde(t)
return t,p

low, high = 4.4e-6, 4.8e-6 # Data range
meanl, stdl, weightl = 4.57e-6, 3e-8, 0.4 # low-density Gaussian
mean2, std2, weight2 = 4.63e-6, 3e-8, 0.6 # high-density Gaussian

# Generate samples for each Gaussian
n_samples = 1000

n_samplesl = int(n_samples * weightl)
n_samples2 = n_samples - n_samplesl

# Combine and clip the samples within the specified range
np.random.seed(42)

samplesl = np.random.normal(meanl, stdl, n_samplesl)
samples2 = np.random.normal(mean2, std2, n_samples2)
samples = np.concatenate([samplesl, samples2])

Example 11-2 Gaussian Mixture Model (GMM)

# Gaussian Mixture Model (GMM) Sample Generator
from sklearn.mixture import GaussianMixture

def GMM(v, n_samples=1000, n_components=2, scale=1e2):
gmm = GaussianMixture(n_components=n_components, covariance_type='full', random_state=0)
gmm.fit(v*scale)
dv, _ = gmm.sample(n_samples=n_samples) # generated samples
return dv/scale

fake = GMM(samples.reshape(-1,1), n_samples=len(samples)*50, scale=1e8).reshape(-1)

# statistical quantization

gl = np.quantile(samples, g=sigma_percentage(3.0)/100)
g2 = np.quantile(fake, g=sigma_percentage(4.5)/100)
tl, pl = featureKDE(samples)

t2, p2 = featureKDE(fake)
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plt
plt
plt
plt
plt

plt

# visualization
plt.
plt.
plt.
({1len(samples):,})")
plt.
plt.
plt.
plt.
plt.
plt.
plt.
.xlabel('Value')

.ylabel('Density")
.grid(which="major',linestyle="'-"',zorder=0, alpha=0.5)
.grid(which="minor',linestyle="':"',zorder=0, alpha=0.5)
.minorticks_on()

plt.
.tight_layout()

figure(figsize=(8,5))
title('XOR2D1 Power Distribution')
hist(samples, bins=50, density=True, alpha=0.4, color='skyblue', label=f'Histogram

hist(fake, bins=50, density=True, alpha=0.4, color='orange', label=f'Fake ({len(fake):,})")
plot(tl, pl, c="k', 1ls="--', lw=2, alpha=0.5, label='PDF (real)"')

plot(t2, p2, c="b', lw=3, alpha=0.5, label='PDF (fake)')

axvline(ql[@], c='r', alpha=0.3)

axvline(ql[1], c='r', alpha=0.3, label=f'Real 3$\sigma$: {q1[0]:.2e}, {qi[1l]:.2e}")
axvline(qg2[@], c='b', alpha=0.3)

axvline(qg2[1], c='b"', alpha=0.3, label=f'GMM 4.5%$\sigma$: {q2[0]:.2e}, {q2[1]:.2e}")

legend()

Example 11-1 simulates the power distribution of the XOR2D1 unit after 1,000 Monte Carlo runs using
two Gaussian distributions. Example 11-2 applies a Gaussian Mixture Model (GMM) to the data,
generating 50,000 samples. The program defines the means, standard deviations, and weights for the

distributions, and generates samples accordingly. The original XOR2D1 power distribution and its 3o

boundary are compared with the 4.50 boundary of the simulated data. A smooth probability density

function (PDF) is then created using Kernel Density Estimation (KDE) for visualization and analysis.

1e7 XOR2D1 Power Distribution
Histogram (1,000)
1.2 Fake (50,000)
— = PDF (real)
=== PDF (fake)
1.01 Real 30: 4.50e-06, 4.71e-06

GMM 4.50: 4.45e-06, 4.74e-06
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Fig. 11-15 XOR2D1 Power Probability Density Distribution
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Chapter 12. Conclusion and Outlook

Fig. 12-1 illustrates the U-Net structure used to model semiconductor production and optimization. The
ultimate goal is to enhance productivity and competitiveness by refining chip design through data-
driven feedback to achieve optimal energy efficiency. By combining on-chip monitoring with machine
learning and cross-dimensional data analysis, DTCO.ML offers an effective solution for optimizing both
chip efficiency and productivity, making it a critical research focus in the field.

However, challenges persist, including the lack of standardized monitoring IPs and test data, barriers to
cross-domain data interaction, and traditional modeling discrepancies. Sparse test data can introduce
bias, while high-confidence simulations are time-consuming and require optimization. The integration
of generative Al holds great promise, with DTCO.GenAl emerging as a key focus for future development.
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Fig. 12-1 Semiconductor Industry and Chip Design Innovation
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.1. Al-Enhanced DTCO: Revolutionizing Chip Design and Process Optimization (DTCO.ML™)

Integrating machine learning with DTCO enables precise process recipe guidance, reducing test costs
and enhancing product quality. Key applications include:

e Design and Process Recipes Optimization: Machine learning models recommend optimal parameter
combinations by analyzing their impact on chip performance.

e Cell and Physical Design Flow Optimization: Mathematical models facilitate dynamic adjustments
between cell design and physical implementation, shortening development cycles.

e Binning Strategy Generation and Optimization: Predictive models based on historical data
accurately forecast chip performance and optimize binning strategies. System-level compensation
boosts yield, reliability, and competitiveness.

12.2. Generative Al-Driven Optimization (DTCO.GenAl™)

Machine learning models, trained on extensive chip data, analyze the relationships between process
parameters, performance variability, and efficiency. Virtual Silicon Data, encompassing component
performance, electrical characteristics, and process distribution, is crucial in DTCO. Key benefits include:

e Overcoming Data Acquisition Barriers: Virtual silicon reflects real process and production test data,
compressing the data through generative models while ensuring data confidentiality, effectively
addressing data acquisition issues.

e Enabling Cross-Disciplinary Collaboration: Providing a standardized, shareable data platform to
facilitate efficient collaboration between chip design and process teams.

e Enhancing Product Optimization: Virtual data enables rapid iteration and optimization through
performance prediction and process simulation.

12.3. EDA Innovation and Future Outlook

Al and machine learning are reshaping DTCO, enhancing efficiency and accuracy while paving the way
for intelligent EDA tools. Virtual chip generation, leveraging GANs and Diffusion Models, precisely
models microscopic data distributions and system-level variability, optimizing design margins and chip
efficiency. Meanwhile, generative Al advances WAT data super-resolution and accelerates SPICE Monte
Carlo approximations, reducing verification time and strengthening decision confidence. These
breakthroughs are driving next-generation DTCO EDA tools, improving production efficiency, lowering
costs, and optimizing quality, ushering in a smarter, more efficient semiconductor future.
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Appendix

Open Source Resource List
DTCO Framework
https://github.com/dipsci/DTCO

https://pypi.org/project/DTCO/0.1.4

Google Colab: libMetric
https://colab.research.google.com/drive/1KIIpLU40ZM4ITI8Xg)7e947N6QylIp9H
https://colab.research.google.com/drive/16Y2aNTqC _v2vt/iCqwqgpMnOLQk elLxWA

https://colab.research.google.com/drive/1pjOfnW09y2/h7XkOHn5fK60U70N04Vus

Google Colab: Generated Model (Virtual Silicon)
https://colab.research.google.com/drive/1oags2cgVHDtQ2UECVjbFYKxL8RWvxjmq

https://colab.research.google.com/drive/1JNai0036dDg2silpaOwmtf6 WveUalz-k
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Glossary of Terms

A

AOCV : Advanced On-Chip Variation
AVS : Adaptive Voltage Scaling

B

BCE: Binary Cross Entropy

Binning : Chip classification by electrical metrics
BIST : Built-In Self-Test

BTC : Bitcoin

(o

CCS : Composite Current Source (Liberty)
CDF : Cumulative Distribution Function

CG : Clock Gating

CP: Chip Probe

CPO : Co-Packaged Optics

CTS : Clock Tree Synthesis

cVAE : Conditional Variational Autoencoder

D

DDPM : Denoising Diffusion Probabilistic Model
DFF : D Flip-Flop

DFT : Design for Test

DL : Delay Line

DTCO : Design-Technology Co-Optimization
DUE : Device Under Extraction

DVFS : Dynamic Voltage and Frequency Scaling

E
EDA : Electronic Design Automation
ERA : Early Rail Analysis

F

FID : Frechet Inception Distance
FT : Final Test

G

GAN : Generative Adversarial Network
GenAl : Generative Al

GMM : Gaussian Mixture Model

GRO : Grid RO

H
HITL : Human-in-the-Loop

|
Isat : WAT Saturation Current

J
JS : Jensen-Shannon Divergence

K
KDE : Kernel Density Estimation

Empowering DTCO Innovation with Al and Machine Learning

L

LEO : Low Earth Orbit Satellite

LDO : Low Dropout Regulator

LS : Least Squares Regression

LSC : LS Coefficient

LVF : Liberty Variation Format (Liberty)
LVS : Layout Versus Schematic

M

MBIST : Memory Built-In Self-Test

MCU : Microcontroller Unit

ML : Machine Learning

MVN : Multivariate Normal Distribution

N
NLDM : Non-Linear Device Model (Liberty)
N/P : N-type vs. P-type Semiconductor

0

OCM : On-chip Monitors
OCSB : On-chip Self-Binning
OCV : On-chip Variation

P
PDF : Probability Density Function
PL/PG : Pulse-Latch / Pulse Generator
PPA : Power, Performance, and Area
PVT : Process, Voltage, Temperature

R
Re-K : Re-characterization
RO : Ring Oscillator

S

S2S : SPICE-to-Silicon

SIDD : Static IDD, CP Leakage Current

SPICE : Simulation Program with Integrated Circuit Emphasis
SLT: System-level Test

STA : Static Timing Analysis

U
UID : Unique Identifier
ULE : Ultra-low Energy

\"
Vsat : WAT Saturation Voltage
Vil : WAT Threshold Voltage Low

w

WAT: Wafer Acceptance Test
WAT-SR : WAT Super Resolution
WID : Within Die
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